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Abstract
(ASP).NET1 is a widely used web application development environment. In addition to many features
considered standard for a web application platform, it provides built-in session management. Session
identifiers are automatically generated and are typically provided to users (web browsers) as HTTP
cookies. This paper provides a basic outline of how these session identifiers are generated which helps in
better understanding their security.

1 Introduction

Web application session identifiers are commonly relied on to track user sessions and to authenticate users
with each request. Because the HTTP protocol is inherently stateless from one request to the next, session
identifiers are a critical component of flexible authentication systems. This also means that if an attacker
were to guess or discover a victim’s session identifier, she would typically be able to hijack the session and
all application privileges associated with it.

The motivation for this research came about through empirical analysis of ASP.NET_SessionId cookies.
These cookies are commonly the default session identifier in ASP.NET applications. The following identifiers
are typical of the cookie values assigned:

w2wk4155d3gonl4533gl1wbb
rss3yp45qz4g0Obbbkgpwjxi2
qaqgbjrz23didt45errb5isbb
Osufqob55sbnr2rjujaabchb5
tnp20555gvssup4bmovzcbb5
P2qjfb45wuloopb5511jqf045
z5pptp3galulbg45c2b05smc
lyurinjugbuugqu0fym3x055

Immediately, visual inspection of these values unveils some suspicious patterns in the data. Alphanumeric
digits 7, 8, 15, 16, 23, and 24 seem to have unusually frequent occurrences of “4” and “5”. This is confirmed
with more rigorous statistical analysis using stompy [5], a session identifier analysis tool. The results from
stompy indicate that these suspicious columns are indeed less than perfectly random and that the overall
session identifiers contain at most around 117.5 bits of entropy. By current standards, this amount of entropy
would be more than sufficient for long term security (let alone temporary access). However, a Microsoft article
[2] indicates that these identifiers should have about 120 bits of entropy. This discrepancy is small, but taken
together with the non-uniformity of the cookie digits, we felt it worth while to investigate further the method
by which .NET generates these tokens.

2 Analysis

A basic ASP.NET application was created (on Windows 2003 / .NET 2.0.50727) with a single page which
caused a session cookie to be set. A debugger, OllyDbg [4], was then used to attach to the w3wp.exe process.

LAll trademarks are properties of their respective owners.



2 ANALYSIS
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Table 1: Character Encoding Table

Breakpoints were set at commonly used cryptography functions, which revealed that CryptGenRandom [3] was
called exactly once with each sessionless request. The output of this function (a binary buffer) was followed
until the cookie encoding function was located and analyzed.

Asis advertised by Microsoft, we found that 15 bytes, or 120 bits, of entropy were returned by CryptGenRandom.
However, we also found that due to a bug in the cookie encoding algorithm, the effective entropy can be
somewhat smaller. The encoding algorithm treats the 120 bit buffer as three blocks of 40 bits each. For each
block the following C-like pseudocode roughly outlines the algorithm:

Let BLOCK be the 40-bit block of entropy to encode
Let BUFF be a 32-bit register initialized to O
Let ENCODE be a character array

Let OUTPUT be a string

BUFF = BLOCK[0]

BUFF = BUFF | (BLOCK[1] << 8)

BUFF = BUFF | (BLOCK[2] << 16)

BUFF = BUFF | (BLOCK[3] << 24)
Append ENCODE[BUFF & 0x1F] to OUTPUT
BUFF = BUFF >> 5

Append ENCODE[BUFF & 0x1F] to OUTPUT
BUFF = BUFF >> 5

Append ENCODE[BUFF & 0x1F] to QOUTPUT
BUFF = BUFF >> 5

Append ENCODE[BUFF & 0x1F] to OUTPUT
BUFF = BUFF >> 5

Append ENCODE[BUFF & 0x1F] to QOUTPUT
BUFF = BUFF >> 5

Append ENCODE[BUFF & 0x1F] to OUTPUT
BUFF = BUFF >> 5

BUFF = (BLOCK[4] << 2) | BUFF

Append ENCODE[BUFF & 0x1F] to QUTPUT
BUFF = BUFF >> 5

Append ENCODE[BUFF & 0x1F] to OUTPUT
return OUTPUT

Here, as in the C programming language, the bitwise operation << denotes left shift, >> is bitwise right shift,
| is bitwise OR, and & is bitwise AND. The ENCODE table is a simple translation table detailed in Table 1.

The bug here arises due to an oversight in the behavior of the right shift operator. The operation used
fills any left over high bits with the value of the highest bit when the shift was started. Therefore, when the
first four bytes are loaded into the 32-bit register, each successive right shift causes all left over high bits
to either be set to 1, or to 0, based on what the highest bit of BLOCK[3] was. (For instance, a 32-bit value
of 0x80000000 right shifted 30 bits would be 0xFFFFFFFC.) Once the 32-bit register is reduced to 2 remaining
usable bits, it is ORed with the remaining byte from BLOCK. If the high bits of the register were 1’s, then this
additional byte is completely lost, since 1 ORed with anything is 1. However, if the high bit of BLOCK[3] was
0, then the entropy is preserved for this block.

Now it becomes clear why the final two digits of each 40-bit block are commonly 4 or 5. Fifty percent of
the time, the last digit in each group can only be 5 (all 1’s) and the second to last digit in that case can only
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CASE FREQUENCY MAXiMUM ENTROPY
All BUFF high bits set 1/8 96
Two BUFF high bits set 3/8 104
One BUFF high bit set 3/8 112
Zero BUFF high bits set 1/8 120
Weighted Mean 108

Table 2: Mean Identifier Entropy

be 4 or 5 (two bits, but one of them is the culprit high-bit, which we know is 1). The other fifty percent of
the time, these two digits can be random, all directly derived from the CryptGenRandom call. This issue can
be trivially avoided by applying a simple mask to BUFF prior to ORing in the final BLOCK[4] byte.

As to the impact on the session identifiers’ security, we see that in the worst case, each of the three 40-bit
block groups could lose 8 bits of entropy. This would leave us with 120 - 24 = 96 bits of data directly derived
from CryptGenRandom. While this function’s algorithm has received some criticism [1], it appears to generate
reasonbly safe output and 96 bits of entropy is considered safe by today’s standards, especially for online
attacks. However, in the typical scenario, the expected entropy would depend on the specific possible cases
and their frequency, as outlined in Table 2.

3 Conclusion

This brief analysis shows that while .NET’s base session identifier algorithm exhibits some flaws, it should
withstand current known attack methods. The specifics of the algorithm, as included here, will hopefully
help the public understand the impact of any future flaws found within CryptGenRandom or other parts of
the .NET framework. If nothing else, other curious cryptanalysts will no longer need to wonder about
the statistical anomalies exhibited by these identifiers or waste time trying to attack them through blind
statistical analysis.
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