
A Brief Analysis of ASP.NET Session Identi�ersTimothy D. Morgan<tim-sessions {α} sentinelhiken.org>Deember 18, 2008Abstrat(ASP).NET1 is a widely used web appliation development environment. In addition to many featuresonsidered standard for a web appliation platform, it provides built-in session management. Sessionidenti�ers are automatially generated and are typially provided to users (web browsers) as HTTPookies. This paper provides a basi outline of how these session identi�ers are generated whih helps inbetter understanding their seurity.1 IntrodutionWeb appliation session identi�ers are ommonly relied on to trak user sessions and to authentiate userswith eah request. Beause the HTTP protool is inherently stateless from one request to the next, sessionidenti�ers are a ritial omponent of �exible authentiation systems. This also means that if an attakerwere to guess or disover a vitim's session identi�er, she would typially be able to hijak the session andall appliation privileges assoiated with it.The motivation for this researh ame about through empirial analysis of ASP.NET_SessionId ookies.These ookies are ommonly the default session identi�er in ASP.NET appliations. The following identi�ersare typial of the ookie values assigned:w2wk4155d3gonl4533gl1w55rss3yp45qz4g0b55kgpwjxi2qaqgbjrz23didt45err5is550sufqo55sbnr2rjujaabh55tnp20555gvssup45movz555p2qjfb45wu1oop551ljqf045z5pptp3ga0u1bg452b05sm1yurinjug5uugqu0fym3x055Immediately, visual inspetion of these values unveils some suspiious patterns in the data. Alphanumeridigits 7, 8, 15, 16, 23, and 24 seem to have unusually frequent ourrenes of �4� and �5�. This is on�rmedwith more rigorous statistial analysis using stompy [5℄, a session identi�er analysis tool. The results fromstompy indiate that these suspiious olumns are indeed less than perfetly random and that the overallsession identi�ers ontain at most around 117.5 bits of entropy. By urrent standards, this amount of entropywould be more than su�ient for long term seurity (let alone temporary aess). However, a Mirosoft artile[2℄ indiates that these identi�ers should have about 120 bits of entropy. This disrepany is small, but takentogether with the non-uniformity of the ookie digits, we felt it worth while to investigate further the methodby whih .NET generates these tokens.2 AnalysisA basi ASP.NET appliation was reated (on Windows 2003 / .NET 2.0.50727) with a single page whihaused a session ookie to be set. A debugger, OllyDbg [4℄, was then used to attah to the w3wp.exe proess.1All trademarks are properties of their respetive owners. 1

2 ANALYSIS0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a b d e f g h i j k l m n o p16 17 18 19 20 21 22 23 24 25 26 27 27 29 30 31q r s t u v w x y z 0 1 2 3 4 5Table 1: Charater Enoding TableBreakpoints were set at ommonly used ryptography funtions, whih revealed that CryptGenRandom [3℄ wasalled exatly one with eah sessionless request. The output of this funtion (a binary bu�er) was followeduntil the ookie enoding funtion was loated and analyzed.As is advertised by Mirosoft, we found that 15 bytes, or 120 bits, of entropy were returned by CryptGenRandom.However, we also found that due to a bug in the ookie enoding algorithm, the e�etive entropy an besomewhat smaller. The enoding algorithm treats the 120 bit bu�er as three bloks of 40 bits eah. For eahblok the following C-like pseudoode roughly outlines the algorithm:Let BLOCK be the 40-bit blok of entropy to enodeLet BUFF be a 32-bit register initialized to 0Let ENCODE be a harater arrayLet OUTPUT be a stringBUFF = BLOCK[0℄BUFF = BUFF | (BLOCK[1℄ <�< 8)BUFF = BUFF | (BLOCK[2℄ <�< 16)BUFF = BUFF | (BLOCK[3℄ <�< 24)Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5BUFF = (BLOCK[4℄ <�< 2) | BUFFAppend ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTreturn OUTPUTHere, as in the C programming language, the bitwise operation <�< denotes left shift, >�> is bitwise right shift,| is bitwise OR, and & is bitwise AND. The ENCODE table is a simple translation table detailed in Table 1.The bug here arises due to an oversight in the behavior of the right shift operator. The operation used�lls any left over high bits with the value of the highest bit when the shift was started. Therefore, when the�rst four bytes are loaded into the 32-bit register, eah suessive right shift auses all left over high bitsto either be set to 1, or to 0, based on what the highest bit of BLOCK[3℄ was. (For instane, a 32-bit valueof 0x80000000 right shifted 30 bits would be 0xFFFFFFFC.) One the 32-bit register is redued to 2 remainingusable bits, it is ORed with the remaining byte from BLOCK. If the high bits of the register were 1's, then thisadditional byte is ompletely lost, sine 1 ORed with anything is 1. However, if the high bit of BLOCK[3℄ was0, then the entropy is preserved for this blok.Now it beomes lear why the �nal two digits of eah 40-bit blok are ommonly 4 or 5. Fifty perent ofthe time, the last digit in eah group an only be 5 (all 1's) and the seond to last digit in that ase an only2

REFERENCESCase Frequeny Maximum EntropyAll BUFF high bits set 1/8 96Two BUFF high bits set 3/8 104One BUFF high bit set 3/8 112Zero BUFF high bits set 1/8 120Weighted Mean 108Table 2: Mean Identi�er Entropybe 4 or 5 (two bits, but one of them is the ulprit high-bit, whih we know is 1). The other �fty perent ofthe time, these two digits an be random, all diretly derived from the CryptGenRandom all. This issue anbe trivially avoided by applying a simple mask to BUFF prior to ORing in the �nal BLOCK[4℄ byte.As to the impat on the session identi�ers' seurity, we see that in the worst ase, eah of the three 40-bitblok groups ould lose 8 bits of entropy. This would leave us with 120 - 24 = 96 bits of data diretly derivedfrom CryptGenRandom. While this funtion's algorithm has reeived some ritiism [1℄, it appears to generatereasonbly safe output and 96 bits of entropy is onsidered safe by today's standards, espeially for onlineattaks. However, in the typial senario, the expeted entropy would depend on the spei� possible asesand their frequeny, as outlined in Table 2.3 ConlusionThis brief analysis shows that while .NET's base session identi�er algorithm exhibits some �aws, it shouldwithstand urrent known attak methods. The spei�s of the algorithm, as inluded here, will hopefullyhelp the publi understand the impat of any future �aws found within CryptGenRandom or other parts ofthe .NET framework. If nothing else, other urious ryptanalysts will no longer need to wonder aboutthe statistial anomalies exhibited by these identi�ers or waste time trying to attak them through blindstatistial analysis.Referenes[1℄ Benny Pinkas Leo Dorrendorf, Zvi Gutterman. Cryptanalysis of the Random Number Generator of theWindows Operating System. 2007. Available at: http://eprint.iar.org/2007/419.pdf.[2℄ Mirosoft. How and why session IDs are reused in ASP.NET. 2006. Available at:http://support.mirosoft.om/kb/899918.[3℄ Mirosoft. CryptGenRandom Funtion. 2008. Available at: http://msdn.mirosoft.om/en-us/library/aa379942(VS.85).aspx.[4℄ Oleh Yushuk. OllyDbg. Available at: http://www.ollydbg.de/.[5℄ Mihal Zalewski. Stompy the Session Stomper. 2007. Available at:http://freshmeat.net/projets/stompy/.

3

