
A Brief Analysis of ASP.NET Session Identi�ersTimothy D. Morgan<tim-sessions {α} sentinel
hi
ken.org>De
ember 18, 2008Abstra
t(ASP).NET1 is a widely used web appli
ation development environment. In addition to many features
onsidered standard for a web appli
ation platform, it provides built-in session management. Sessionidenti�ers are automati
ally generated and are typi
ally provided to users (web browsers) as HTTP
ookies. This paper provides a basi
 outline of how these session identi�ers are generated whi
h helps inbetter understanding their se
urity.1 Introdu
tionWeb appli
ation session identi�ers are
ommonly relied on to tra
k user sessions and to authenti
ate userswith ea
h request. Be
ause the HTTP proto
ol is inherently stateless from one request to the next, sessionidenti�ers are a
riti
al
omponent of �exible authenti
ation systems. This also means that if an atta
kerwere to guess or dis
over a vi
tim's session identi�er, she would typi
ally be able to hija
k the session andall appli
ation privileges asso
iated with it.The motivation for this resear
h
ame about through empiri
al analysis of ASP.NET_SessionId
ookies.These
ookies are
ommonly the default session identi�er in ASP.NET appli
ations. The following identi�ersare typi
al of the
ookie values assigned:w2wk4155d3gonl4533gl1w55rss3yp45qz4g0b55kgpwjxi2qaqgbjrz23didt45err5is550sufqo55sbnr2rjujaab
h55tnp20555gvssup45movz
555p2qjfb45wu1oop551ljqf045z5pptp3ga0u1bg45
2b05sm
1yurinjug5uugqu0fym3x055Immediately, visual inspe
tion of these values unveils some suspi
ious patterns in the data. Alphanumeri
digits 7, 8, 15, 16, 23, and 24 seem to have unusually frequent o

urren
es of �4� and �5�. This is
on�rmedwith more rigorous statisti
al analysis using stompy [5℄, a session identi�er analysis tool. The results fromstompy indi
ate that these suspi
ious
olumns are indeed less than perfe
tly random and that the overallsession identi�ers
ontain at most around 117.5 bits of entropy. By
urrent standards, this amount of entropywould be more than su�
ient for long term se
urity (let alone temporary a

ess). However, a Mi
rosoft arti
le[2℄ indi
ates that these identi�ers should have about 120 bits of entropy. This dis
repan
y is small, but takentogether with the non-uniformity of the
ookie digits, we felt it worth while to investigate further the methodby whi
h .NET generates these tokens.2 AnalysisA basi
 ASP.NET appli
ation was
reated (on Windows 2003 / .NET 2.0.50727) with a single page whi
h
aused a session
ookie to be set. A debugger, OllyDbg [4℄, was then used to atta
h to the w3wp.exe pro
ess.1All trademarks are properties of their respe
tive owners. 1

2 ANALYSIS0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a b
 d e f g h i j k l m n o p16 17 18 19 20 21 22 23 24 25 26 27 27 29 30 31q r s t u v w x y z 0 1 2 3 4 5Table 1: Chara
ter En
oding TableBreakpoints were set at
ommonly used
ryptography fun
tions, whi
h revealed that CryptGenRandom [3℄ was
alled exa
tly on
e with ea
h sessionless request. The output of this fun
tion (a binary bu�er) was followeduntil the
ookie en
oding fun
tion was lo
ated and analyzed.As is advertised by Mi
rosoft, we found that 15 bytes, or 120 bits, of entropy were returned by CryptGenRandom.However, we also found that due to a bug in the
ookie en
oding algorithm, the e�e
tive entropy
an besomewhat smaller. The en
oding algorithm treats the 120 bit bu�er as three blo
ks of 40 bits ea
h. For ea
hblo
k the following C-like pseudo
ode roughly outlines the algorithm:Let BLOCK be the 40-bit blo
k of entropy to en
odeLet BUFF be a 32-bit register initialized to 0Let ENCODE be a
hara
ter arrayLet OUTPUT be a stringBUFF = BLOCK[0℄BUFF = BUFF | (BLOCK[1℄ <�< 8)BUFF = BUFF | (BLOCK[2℄ <�< 16)BUFF = BUFF | (BLOCK[3℄ <�< 24)Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5BUFF = (BLOCK[4℄ <�< 2) | BUFFAppend ENCODE[BUFF & 0x1F℄ to OUTPUTBUFF = BUFF >�> 5Append ENCODE[BUFF & 0x1F℄ to OUTPUTreturn OUTPUTHere, as in the C programming language, the bitwise operation <�< denotes left shift, >�> is bitwise right shift,| is bitwise OR, and & is bitwise AND. The ENCODE table is a simple translation table detailed in Table 1.The bug here arises due to an oversight in the behavior of the right shift operator. The operation used�lls any left over high bits with the value of the highest bit when the shift was started. Therefore, when the�rst four bytes are loaded into the 32-bit register, ea
h su

essive right shift
auses all left over high bitsto either be set to 1, or to 0, based on what the highest bit of BLOCK[3℄ was. (For instan
e, a 32-bit valueof 0x80000000 right shifted 30 bits would be 0xFFFFFFFC.) On
e the 32-bit register is redu
ed to 2 remainingusable bits, it is ORed with the remaining byte from BLOCK. If the high bits of the register were 1's, then thisadditional byte is
ompletely lost, sin
e 1 ORed with anything is 1. However, if the high bit of BLOCK[3℄ was0, then the entropy is preserved for this blo
k.Now it be
omes
lear why the �nal two digits of ea
h 40-bit blo
k are
ommonly 4 or 5. Fifty per
ent ofthe time, the last digit in ea
h group
an only be 5 (all 1's) and the se
ond to last digit in that
ase
an only2

REFERENCESCase Frequen
y Maximum EntropyAll BUFF high bits set 1/8 96Two BUFF high bits set 3/8 104One BUFF high bit set 3/8 112Zero BUFF high bits set 1/8 120Weighted Mean 108Table 2: Mean Identi�er Entropybe 4 or 5 (two bits, but one of them is the
ulprit high-bit, whi
h we know is 1). The other �fty per
ent ofthe time, these two digits
an be random, all dire
tly derived from the CryptGenRandom
all. This issue
anbe trivially avoided by applying a simple mask to BUFF prior to ORing in the �nal BLOCK[4℄ byte.As to the impa
t on the session identi�ers' se
urity, we see that in the worst
ase, ea
h of the three 40-bitblo
k groups
ould lose 8 bits of entropy. This would leave us with 120 - 24 = 96 bits of data dire
tly derivedfrom CryptGenRandom. While this fun
tion's algorithm has re
eived some
riti
ism [1℄, it appears to generatereasonbly safe output and 96 bits of entropy is
onsidered safe by today's standards, espe
ially for onlineatta
ks. However, in the typi
al s
enario, the expe
ted entropy would depend on the spe
i�
 possible
asesand their frequen
y, as outlined in Table 2.3 Con
lusionThis brief analysis shows that while .NET's base session identi�er algorithm exhibits some �aws, it shouldwithstand
urrent known atta
k methods. The spe
i�
s of the algorithm, as in
luded here, will hopefullyhelp the publi
 understand the impa
t of any future �aws found within CryptGenRandom or other parts ofthe .NET framework. If nothing else, other
urious
ryptanalysts will no longer need to wonder aboutthe statisti
al anomalies exhibited by these identi�ers or waste time trying to atta
k them through blindstatisti
al analysis.Referen
es[1℄ Benny Pinkas Leo Dorrendorf, Zvi Gutterman. Cryptanalysis of the Random Number Generator of theWindows Operating System. 2007. Available at: http://eprint.ia
r.org/2007/419.pdf.[2℄ Mi
rosoft. How and why session IDs are reused in ASP.NET. 2006. Available at:http://support.mi
rosoft.
om/kb/899918.[3℄ Mi
rosoft. CryptGenRandom Fun
tion. 2008. Available at: http://msdn.mi
rosoft.
om/en-us/library/aa379942(VS.85).aspx.[4℄ Oleh Yus
huk. OllyDbg. Available at: http://www.ollydbg.de/.[5℄ Mi
hal Zalewski. Stompy the Session Stomper. 2007. Available at:http://freshmeat.net/proje
ts/stompy/.

3

