

FORENSIC ANALYSIS OF UNALLOCATED SPACE

IN WINDOWS REGISTRY HIVE FILES

By

Jolanta Thomassen

A DISSERTATION

Submitted to

The University of Liverpool

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

04/11/ 2008

ABSTRACT

FORENSIC ANALYSIS OF UNALLOCATED SPACE

IN WINDOWS REGISTRY HIVE FILES

By

Jolanta Thomassen

Windows registry is an excellent source of information for computer forensic purposes. The

registry stores data physically on a disk in several hive files. Just like a file system, registry hive

files contain used and free clusters of data. So far, the focus in Windows registry forensics has

been on active keys and values that can be viewed with Windows registry editors. It has been a

mystery, whether deleted or updated keys can be recovered from registry hive files, in a similar

way that deleted files can be recovered from a file system.

This project studies the physical structure of the binary registry hive files and shows that pre-

viously deleted or updated keys and their values indeed remain in the unallocated space until

they become overwritten. The project proposes an algorithm for computing of unallocated

space in registry hives as well as methods for recovery of deleted keys remaining in the unallo-

cated space.

DECLARATION

I hereby certify that this dissertation constitutes my own product, that where the language of

others is set forth, quotation marks so indicate, and that appropriate credit is given where I

have used the language, ideas, expressions, or writings of another.

I declare that the dissertation describes original work that has not previously been presented

for the award of any other degree of any institution.

Signed,

Jolanta Thomassen

ACKNOWLEDGEMENTS

I would like to express my gratitude to Laureate Online Education and the University of Liver-

pool for allowing me to study online for a Masters degree. I would like to thank Basem Shihada

for agreeing to be my dissertation advisor and Harlan Carvey for agreeing to be my sponsor.

Last but not least I am truly grateful to my husband and daughter for supporting me during the

past two years. Besides being supportive, they have both showed how much they have been

inspired by me: my daughter excels at her school while my husband has just enrolled in an

MBA programme.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES vii�

LIST OF FIGURES viii�

Chapter 1. Introduction 1�

1.1� Scope 1�

1.2� Problem Statement 1�

1.3� Approach 2�

1.4� Outcome 3�

Chapter 2. Background and review of literature 4�

Chapter 3. Analysis and Design 6�

3.1� Registry hive structure 7�

3.2� Registry parser 15�

3.3� Allocated space 19�

3.4� Unallocated space 20�

3.5� Simpler way to compute unallocated space 21�

3.6� Recovery of deleted data 22�
3.6.1� Recovery of keys and their values ... 23�
3.6.2� Data validation .. 25�
3.6.3� Improved algorithm... 29�

Chapter 4. Methods and Realization 32�

4.1� Methodology 32�

4.2� Tools 32�

4.3� Realization 33�

4.4� Tests 34�
4.4.1� Hive file structure.. 35�
4.4.2� Data fields .. 36�
4.4.3� Registry parser ... 38�
4.4.4� Calculation of unallocated space ... 44�
4.4.5� Recovery of deleted keys and their values .. 46�

Chapter 5. Results and Evaluation 50�

5.1� Results 50�

5.2� Evaluation 51�

 vi

Chapter 6. Conclusions 53�

REFRENCES CITED 54�

Appendix A. Program listings 56�

A.1 regparser.pl 56�

A.2 regslack.pl 60�

A.3 Reg.pm 68�

A.4 hivestructure.pl 74�

A.5 datafields.pl 75�

A.6 regp.pl by Harlan Carvey 79�

Appendix B. Sample Test outputs 87�

B.1 regparser.pl 87�

B.2 regparser.pl vs. regp.pl by Harlan Carvey 134�

B.3 regslack.pl - cells with negative sizes in allocated space 139�

B.4 regslack.pl - rejected keys and values 147�

B.5 regslack.pl - recovered keys and values 160�

B.6 regslack.pl - example output file 203�

 vii

LIST OF TABLES

 Page

Table 1 Base block .. 10�
Table 2 Bin header ... 10�
Table 3 Key .. 11�
Table 4 Subkey list "lf"/"lh .. 11�
Table 5 Subkey list "ri"/"li" .. 12�
Table 6 Value list ... 13�
Table 7 Value ... 13�
Table 8 Value data ... 14�
Table 9 Value type ... 14�
Table 10 Class name ... 14�
Table 11 Security descriptor .. 15�
Table 12 Deleted key with values .. 26�
Table 13 Deleted key without values ... 26�
Table 14 Deleted value linking to value data ... 27�
Table 15 Deleted value containing value data ... 27�
Table 16 Hive file structure .. 35�
Table 17 Base block validation .. 37�
Table 18 Bin header validation .. 37�
Table 19 Key validation .. 37�
Table 20 Security descriptor validation .. 37�
Table 21 Class name ... 37�
Table 22 Subkey list validation .. 37�
Table 23 Value list validation ... 38�
Table 24 Value validation ... 38�
Table 25 Linked data validation ... 38�
Table 26 Functional test of regparser.pl ... 39�
Table 27 Comparison of outputs from regparser.pl and regp.pl 40�
Table 28 Number of keys and values recovered by regparser.pl and regp.pl 43�
Table 29 Numbers of "live", recovered and rejected keys and values 46�

 viii

LIST OF FIGURES

 Page

Figure 1 Registry hive file ..7�
Figure 2 Registry tree ..8�
Figure 3 Registry key ...9�
Figure 4 Keys and subkey lists .. 12�
Figure 5 Binary data input .. 16�
Figure 6 Off-line registry parser ... 17�
Figure 7 Deleted key .. 23�
Figure 8 Test hive files ... 34�
Figure 9 Bin header at an offset not divisible by 0x1000 36�
Figure 10 Recovered keys from unallocated cells with negative sizes........... 45�
Figure 11 Recovered data that is partially overwritten 48�
Figure 12 Recovered key and "live" key referring to the same value 48�

 1

Chapter 1. INTRODUCTION

1.1 Scope

Windows registry stores keys and values in physical binary hive files. Used (or allocated)

space in registry hive files contains active registry keys and values. The remaining space

in registry hives constitutes an unallocated space.

The project's goal is to find and examine the unallocated space in registry hive files and to

recover any relevant data remaining there. The project's scope is limited to forensic

analysis of hive files performed in a postmortem investigation, where an investigator

works with a disk image taken from a shutdown system. Hive files on a running system

may contain added information, such as keys describing current hardware settings on a

running machine, and therefore have a different structure than hive files copied from a

shutdown system. Examination of unallocated space of registry hives requires

considerable knowledge of the structure of hive files and how keys and values are stored

and relate to one another. The project studies the allocated space in binary registry hive

files to gain enough information to both identify the unallocated space and to interpret

data remaining there. The final goal of the project is to recover any data that may be of

interest to forensic investigators from the unallocated space.

1.2 Problem Statement

Harlan Carvey, the sponsor of the project, has been involved in incidence response and

computer forensic analysis since 2000. He has been widely published in "Security Focus",

"Information Security Bulletin", and "Digital Investigation Journal". He is the author of

"Windows Forensics and Incident Recovery" published in July 2004 by AWL, and the au-

 2

thor of "Windows Forensic Analysis" published in April 2007 by Syngress/Elsevier. His

current interests include forensic analysis and incident response, and registry and physi-

cal memory analysis. (Carvey, 2008c)

“From the perspective of forensic analysis, there are several areas of interest surrounding

the Windows Registry. Most of the attention focuses on what's in the actual hive files

themselves, and some attention has recently been focused on extracting Registry data

(hive files, keys, values, etc) from within memory dumps and the pagefile. However, little

if any attention has been given to remnants left behind in hive files that are not part of the

active hive file itself; Registry "slack space". These areas may possibly reveal indications

of previously installed applications or user activity, and be extremely valuable to

investigations, particularly those pursued by law enforcement.” (Carvey, 2008a)

1.3 Approach

The first phase of the project studies the structure of registry hive files by gathering and

corroborating the existing knowledge. In the second phase, a method for calculation of

unallocated space is developed. Subsequently, the final phase focuses on recovery of

relevant data from the unallocated space.

Since there is no previous research of the unallocated space in registry hive files, the

project takes an experimental approach, where stages of analysis, design and

implementation are performed simultaneously and refined continually. All tools are

implemented in Perl to accommodate the sponsor of the project, who implements all his

forensic tools in this language.

 3

1.4 Outcome

The project provides a documentation of the structure of relevant parts of registry hive

files, based on examination of the available set of test hive files. Since the test data set is

limited, the project delivers added tools that can examine if a hive file conforms to the

assumptions made about the hive file structure. If any of the assumptions fail in further

tests, the final algorithm can be refined.

The project proposes and implements an algorithm for calculation of unallocated space

and recovery of data. Finally, the project shows that keys can in fact be recovered from

the unallocated space; however, there is a possibility that, despite careful validation, the

recovered data might have been partially overwritten.

 4

Chapter 2. BACKGROUND AND REVIEW OF LITERATURE

The Windows registry is "A central hierarchical database used in Microsoft Windows 98,

Windows CE, Windows NT, and Windows 2000 used to store information that is

necessary to configure the system for one or more users, applications and hardware

devices. The Registry contains information that Windows continually references during

operation, such as profiles for each user, the applications installed on the computer and

the types of documents that each can create, property sheet settings for folders and

application icons, what hardware exists on the system, and the ports that are being used."

(Microsoft, 2002)

Available research in Windows registry forensic focuses on identification of keys that are

relevant for forensic examiners and possibilities for data hiding. Since registry hive files

can have hundreds of thousands of entries, forensic investigators need to familiarize

themselves with the registry to know where to look for evidence. Carvey (2007b) shows

why registry information is valuable to forensic examiners and explains where to look for

information, such as system configuration and user activities. His work continues in his

current development of the Regripper tool (Carvey, 2008d), which correlates types of

information with registry keys, so forensic examiners can extract only data that is relevant

to their investigation. Chang (2007) focuses on registry entries that provide the

information about OS installation and last shutdown times, the system time zone

information as well as information about mounted storage devices. Wong (2007)

discusses keys of interest and opportunities for data hiding in the registry. An adversary

can for example insert text data as a binary value, although the data would be disclosed if

the value was displayed in a hex editor. A more sophisticated technique would involve

converting a text string into a hexadecimal notation and storing it in a value of a string

type. Malware can be hidden and run covertly from keys that automatically execute

programs.

 5

Microsoft registry editors: regedit.exe and regedt32.exe stop displaying key values if they

encounter a key with a name longer than 256 characters (Wong, 2007). Regedit.exe has

another limit in that it can only perform searches on data stored as strings (Microsoft,

2006). This implies a need for independent tools that can parse registry hive files.

Windows applications access the registry using a set of Microsoft registry access

functions (MSDN, 2008c). Microsoft does not provide any documentation of registry hive

files or registry access functions; neither does it provide any tools that can recover

deleted data from the registry hives. However, a few tools extract active registry keys and

values from registry hives without use of Microsoft's API functions. They shed some light

on how binary registry hives can be parsed. Carvey (2007a) implements an offline registry

viewer that parses binary registry hive files and retrieves "live" keys, their timestamps,

and values. Another tool that, will be used as a reference, implements a library of C

functions that access data in registry hives (Nordahl-Hagen, 2008).

A few takes on documentation of registry hives are also available. Russinovich (1999)

provides a first explanation of the registry's building blocks: physical data blocks and

logical bins and cells that contain registry keys and values. Further publications provide

descriptions of how different cells are structured, the first one published by an unknown

author B.D. (n.d.) and a more comprehensive one by Clark (2005). Both publications are

incomplete and limited to Windows 2000 versions, thus excluding new artifacts introduced

in Windows XP and Vista.

Finally, registry cleaner tools claim to manipulate the unallocated space is in registry hive

files. For example, a tool NTREGOPT by Hederer (2005b) claims to remove registry "slack"

space that may contain previously deleted keys and values, by rebuilding the registry

tree.

 6

Chapter 3. ANALYSIS AND DESIGN

The main purpose of this project is to decide whether any information about previously

deleted or changed keys can be recovered from registry hive files. The registry contains

not only information about keys and their values but also data used by the Windows

Operating System to access and manipulate hive files, including in-memory operations.

The focus of this project is to study hive files in a postmortem investigation, where an

investigator works with a disk image of a shutdown system. The project will focus on data

that seems most relevant for a computer forensic examination: keys, their values, and

timestamps - critical information for investigations that need timeline information.

Registry hives have a tree structure where the root key points to its subkeys, which point

to their child subkeys. Keys also contain offsets (pointers) to their values, security settings

and class name. Information contained in the registry is stored in cells - logical units of

data that also contain information about their size. All the cells referred to by the registry

tree form an allocated space within the registry hive file. The questions to be answered

are whether unallocated space that is not referred to by the registry tree contains any

useful information about deleted or updated keys and values, and whether and how this

information can be recovered.

To solve the problem, one has to gain an understanding of how hive files are structured.

Microsoft have never released any documentation of registry hives, however some takes

on at documenting hive files have been made, unfortunately all incomplete and

sometimes inaccurate. The analysis and design will consist of two main parts: parsing of

the registry tree to learn how keys and values are stored in registry hive files, followed by

calculation of unallocated space. Finally, if possible, deleted or updated keys will be

recovered. The main purpose of the first phase is to confirm, verify, and extend the

available information about the structure of registry hives, and the following stages will

use the gained knowledge to calculate and examine the unallocated space.

 7

Because of the exploratory nature of the project, analysis, design and prototyping have

been performed in parallel and revised continually; the following analysis and design

represent therefore the combined knowledge gained in these iterations.

3.1 Registry hive structure

The first description of how the Windows Operating System physically manages the

registry is provided by Russinovich (1999). The registry hive file contains blocks, bins and

cells. Blocks are 0x1000 (4096) bytes in size, and registry hive files are therefore always

a multiple of 0x1000 bytes in size. The first block of the registry is called a base block,

and all the following blocks contain bins, that contain cells. The base block contains

general information about the hive file. Bins are logical units of data and can occupy one

or several blocks. All bins contain a bin header followed by multiple cells. Cells are the

smallest units that contain registry data, and their size is always a multiple of 0x8 bytes.

The last cell of a bin always fills out the remaining space of a bin, meaning there is never

any space in a bin that does not belong to a cell.

Figure 1 Registry hive file

 8

There registry contains the following types of cells (some have signatures while others do

not):

• key cell "nk"

• class name cell

• security descriptor cell "sk"

• subkey list cell "lf", "lh", "ri", "li"

• value list cell

• value cell "vk"

• value data cell

Registry key cells form an unbalanced tree, where the root key cell forms the root of the

tree, and where keys contain pointers to their subkeys (child keys). Each key also

contains a pointer (offset) back to its parent key. Subkeys are sorted alphabetically;

following down the tree in a preorder manner, keys can be retrieved in alphabetical order

- a Windows feature that allows efficient search for a key given its full name.

(Russinovich, 1999)

Figure 2 Registry tree

 9

Besides pointers to subkeys, each registry key contains pointers to its parent key, value

list, class name (if any), and security descriptor. Value lists contain pointers to key values,

and if value data is stored in a separate cell, value cells point to value data cells.

Figure 3 Registry key

The sources used for documentation of base block, bin headers and cells include Clark

(2005), B.D.(n.d), Carvey (2007a) and Nordahl-Hagen (2008). All of those sources are

closely connected in that Nordahl-Hagen (2008) uses findings by B.D. (n.d.), while Carvey

(2007a) uses findings published by Nordahl-Hagen (2008). The following documentation

combines those sources with experimentation, coding and manual examination of sample

binary hives. The following description of cell structures is strictly limited to records that

are necessary for the purposes of the project (parsing of the registry tree, computing of

unallocated space and recovery of keys, their timestamps and their values).

Two important points to note in the following cell descriptions:

- All offsets are relative to the first bin of a hive file, which follows immediately after the

base block; to calculate file offsets 0x1000 bytes must be added to all extracted offsets

 10

- Cell sizes, interpreted as signed long integers, are negative numbers. The size of a cell

is therefore an absolute (or a negated) value of the extracted size.

The base block contains general information about a hive file and has a signature of

"regf". From the base block, it is possible to extract the name of the file including its local

path (except for SYSTEM files, where the local path is not included), the timestamp and

the offset to the registry root key.

The file name is often shortened by the Windows operating system (first characters are

cut off), because the maximum length of the stored name is limited to 32 characters.

Table 1 Base block

Offset: Size (bytes): Contents:

0x0000 0x4 "regf" signature
0x000c 0x8 timestamp (Windows Filetime format)
0x0024 0x4 root key offset
0x0030 0x40 file name (Unicode)

The size of a bin header is always 0x20 bytes, and the bin header includes information

about the size of a bin. The size of a bin can also be interpreted as an offset to the

following bin. In other words, bins are chained together, in that each bin points to the bin

that follows.

Table 2 Bin header

Offset: Size (bytes): Contents:

0x0000 0x4 "hbin" signature

0x0008 0x4 bin size

Key cells carry the signature "nk" and contain information about the size of the cell, name

and timestamp of the key, and offsets to parent key, subkey list, value list, security

descriptor and class name. Offsets are set to 0xffffffff if a key does not have a subkey list,

a value list, a security descriptor or a class name. The key type is not necessary for tree

 11

parsing, but key type values 0x2c and 0xac are reserved for root keys. The information

about the number of subkeys is also included in subkey list cells.

Table 3 Key

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 0x2 "nk" signature
0x0006 0x2 type
0x0008 0x8 timestamp
0x0014 0x4 parent key offset
0x0018 0x4 number of subkeys
0x0020 0x4 subkey list offset
0x0028 0x4 number of values
0x002c 0x4 value list offset
0x0030 0x4 security descriptor offset
0x0034 0x4 class name offset
0x004c 0x2 key name length
0x004e 0x2 class name length
0x0050 variable key name

Subkey lists contain information about the number of subkeys that they refer to. There are

two main types of subkey lists: "lf"/"lh" lists and "ri"/"li" lists. Lists with signatures "lf" or "lh"

contain offsets to subkeys and either first four characters of subkey name or a checksum

of subkey name characters, while "ri" and "li" lists contain offsets to subkeys only.

Table 4 Subkey list "lf"/"lh

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 0x2 "lf" or "lh" signature
0x0006 0x2 number of subkeys
0x0008 0x4 offset to subkey
0x000c 0x4 four characters of subkey name or checksum
0x0010 0x4 offset to subkey
0x0014 0x4 four characters of subkey name or checksum
… … …

 12

Table 5 Subkey list "ri"/"li"

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 0x2 "ri" or "li" signature
0x0006 0x2 number of subkeys
0x0008 0x4 offset to subkey or subkey list
0x000c 0x4 offset to subkey or subkey list
… … …

A subkey list does not necessarily point to subkeys but may also point to other subkey

lists. There have been differences in interpretation of how subkey lists point to one

another. Carvey (2007a), for example, has wrongly assumed that "ri" subkey list can only

either point to "li" subkey lists or subkeys, whereas test have shown that "ri" subkey list

can contain references to "lh" subkey lists as well. Norhdal-Hagen (2008) has corrected

this in the latest versions of ntreg.h library. Since the purpose is to extract all active

keys from the registry hive file, a parser needs to be flexible, and may as well allow any

combination of pointers between subkey lists and subkeys.

A number of keys field in a parent key cell does not necessarily equal a number of keys

field in a subkey list. If a subkey list points to other subkey lists, the number of subkeys

field will contain a number of child subkey lists.

Figure 4 Keys and subkey lists

���

�������	
��

���

�������	
��

�������	
��

���

 13

Each registry key can have multiple values and if this is the case, then the key cell

contains an offset to a list of its values. A value list does not have any signature and

contains only offsets to key values.

Table 6 Value list

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 0x4 offset to value
0x0008 0x4 offset to value
… … …

Values are stored in cells with signature "vk", and contain value name, type and either

value data or an offset to a value data cell. Value name is simple to retrieve as the cell

contains both the name length and the name. If a value cell does not contain a name, the

named value field is set to 0x0 in which case the Windows registry editors translate the

value name to "Default". In all other cases, the named value field is set to 0x1 and the

value name is stored at offset 0x18.

Table 7 Value

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 0x2 "vk" signature
0x0006 0x2 value name length
0x0008 0x2 value data length
0x000b 0x1 data type
0x000c 0x4 value data or offset to value data
0x0010 0x4 value type
0x0014 0x2 named value
0x0018 value name length value name

Value data is either stored internally in the value cell, if the value length does not exceed

four bytes, or in a separate data cell, in which case the value cell contains an offset to a

data cell. The data type field tells whether data is stored internally or externally: if the data

type equals 0x80, the field at offset 0x0c contains value data, otherwise the field contains

offset to a data cell where value data is stored.

 14

Table 8 Value data

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 value data length depends on value type

Value types play an important role, because data has to be interpreted depending on its

type. Windows registry editors display string types as text, numbers as binary data, while

all other types are displayed as both binary and hex dump. REG_SZ, REG_EXPAND_SZ

and REG_MULTI_SZ are all null terminated strings. REG_EXPAND_SZ contains a

reference to an environment variable, for example "DumpFile" =

%SystemRoot%\MEMORY.DMP, where %SystemRoot% is replaced by an actual path at

the run time. REG_MULTI_SZ value type contains several values separated by nulls.

Value types of SAM\Domain keys can also have values in 500 and 1000 ranges, where

account numbers are sometimes used as value types.

Table 9 Value type

Value Type Format

0 REG_NONE undefined type
1 REG_SZ fixed length string
2 REG_EXPAND_SZ variable length string
3 REG_BINARY binary data
4 REG_DWORD 32-bit number
5 REG_DWORD_BIG_ENDIAN 32-bit number (big-endian)
6 REG_LINK Unicode string
7 REG_MULTI_SZ multiple strings
8 REG_RESOURCE_LIST binary data
9 REG_FULL_RESOURCE_DESCRIPTION binary data
10 REG_RESOURCE_REQUIREMENTS_LIST binary data
11 REG_QWORD 64-bit number

Class name is a hidden cell, in that it is not displayed by Windows registry editors. The

parser will therefore extract this cell, so its contents can be examined.

Table 10 Class name

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 class name length class name (Unicode)

 15

There are only a few security descriptors in the registry hives, because many keys, for

efficiency purposes, are sharing the security descriptors whenever possible. Security

descriptors are also the least documented cells in the registry. They contain security

settings (permissions and audits) that control access to keys, and can be viewed using

Windows registry editors. The parser will not include security data, as it seems less

relevant for computer forensic examination. Just as any other cell, security descriptor cell

contains information about its size, which will be used to calculate allocated space.

Table 11 Security descriptor

Offset: Size (bytes): Contents:

0x0000 0x4 size
0x0004 0x2 "sk" signature
… … …

3.2 Registry parser

The main purpose of the registry parser is to parse down the registry tree to access all

allocated registry cells. The secondary goal is to build an offline registry viewer that

displays registry data in a readable form, including key names, their timestamps values

and class names.

As Figure 5 shows below, registry hive files can be displayed in a hex editor, and data

stored as text can be easily read. However, manual extraction and translation of time

stamps (Windows Filetime format represent the number of 100 nanosecond intervals

since January 1, 1601 (MSDN, 2008a)), or manual parsing to correlate keys and values

would be highly impractical.

 16

Figure 5 Binary data input

An off-line registry parser is a useful forensic tool for off-line examination of registry hive

files. The tool will also be indispensable for evaluating whether the registry is parsed

correctly, as output can be validated using Windows registry editors and other off-line

registry viewers. Finally, the registry parser will be used for examination of valid data

ranges of the different data fields.

Figure 6 shows the format of the output, which contains:

• key name, including its full path name

• key timestamp (in square brackets)

• class name (if any)

• list of key values: �value type; value; name; value data

 17

Figure 6 Off-line registry parser

Registry parser is designed to recursively traverse the tree and to extract all relevant

information from registry cells. The traversal is performed in a preorder manner to

preserve the alphabetical order of keys. In a simplified version, the parser can be

modularized as follows:

Registry_Parser

{

 Parse_Base_Block

 Parse_Registry_Tree (root_key_offset)

}

Parse_Base_Block

{

 extract file name and timestamp

 return root_key_offset

}

Parse_Registry_Tree (offset)

{

 if key_cell Parse_Key_Cell (offset)

 else if subkey_list_cell Parse_Sub_Key_List_Cell (offset)

}

Parse_Key_Cell (offset)

{

 extract key name and timestamp

 Parse_Class_Name (class_name_offset)

 18

 Parse_Value_List_Cell (value_list_offset)

 Parse_Registry_Tree (subkey_list_offset)

 }

Parse_Sub_Key_List_Cell (offset)

{

 for each subkey { Parse_Registry_Tree (subkey_offset) }

}

Parse_Value_List_Cell (offset)

{

 for each value { Parse_Key_Value_Cell (value_offset) }

}

Parse_Key_Value_Cell (offset)

{

 extract value name and type

 if value_data_type == 0x80 extract value data

 else Parse_Value_Data_Cell (value_offset)

}

Parse_Value_Data_Cell (offset)

{

 extract and translate value data

}

Extra functionality includes passing of the full key path during the traversal. Since the

intention is to output full path names, the full path of the key is passed between modules

that parse keys and subkey lists.

The purpose of the off-line registry parser is to display relevant data in a human readable

form. The binary data extracted from the registry can have many formats and therefore

need translation. Data stored in ASCII format can be output direct, while data stored in

Unicode format needs translation. In a few special cases, value names are encrypted with

the ROT-13 algorithm and need to be decrypted as well. Value data stored as null

terminated strings can be displayed as text once the terminating nulls are removed.

Values of type REG_MULTI_SZ contain multiple strings separated by null characters,

which need to be separated, before being displayed separated by semicolons. All 32-bit

and 64-bit numbers can be displayed as either numbers or binary data, or both. All other

data types (binary and REG_NONE) will be displayed as both binary data and hex dump.

The main reason for that is that binary type values can contain text - either ASCII or

Unicode, and should therefore be displayed in a more readable hex format.

 19

Many different applications write data to the registry, and data is sometimes stored in

incorrect formats. Sometimes values of type REG_SZ contain arbitrary binary data,

including control characters, such as new lines, tabs, etc. To assure proper formatting of

the output, all control characters in the range of 0x00-0x19 will be removed from all text

output.

3.3 Allocated space

Assuming that registry parser reaches all existing registry cells, unallocated space can be

computed by subtracting the allocated space from the hive file. Allocated_space [] is a

hash where offsets and sizes of all allocated cells are saved. The size of a base block is

0x1000 bytes and size of each bin header is 0x20 bytes. All cells have their size stored in

the first four bytes and the sizes are negative, therefore the actual cell size is an absolute

value (or negated value) of the signed long number.

Registry_Parser

{

 Parse_Base_Block

 Parse_Bin_Headers

 Parse_Registry_Tree (root_key_offset)

}

Parse_Base_Block

{

 Allocated_space [offset] = 0x1000

 return root_key_offset

}

Parse_Bin_Headers

{

 my blocks = file_size / 0x1000

 for each block

 {

 if bin header { Allocated_space [block_offset] = 0x20

}

 }

}

Parse_Registry_Tree (offset)

{

 if key_cell { Parse_Key_Cell (offset) }

 else if subkey_list { Parse_Sub_Key_List_Cell (offset) }

}

 20

Parse_Key_Cell (offset)

{

 Allocated_space [offset] = key_cell_size

 Allocated_space [class_name_offset] = class_name_cell_size

 Allocated_space [security_descriptor_offset]

 = security_descriptor_cell_size

 Parse_Value_List_Cell (value_list_offset)

 Parse_Registry_Tree (subkey_list_offset)

 }

Parse_Sub_Key_List_Cell (offset)

{

 Allocated_space [offset] = subkey_list cell_size

 for each subkey { Parse_Registry_Tree (subkey offset) }

}

Parse_Value_List_Cell (offset)

{

 Allocated_space [offset] = value_list_cell_size

 for each value { Parse_Key_Value_Cell (value_offset) }

}

Parse_Key_Value_Cell (offset)

{

 Allocated_space [offset] = value_cell_size

 if value_data_type <> 0x80

 { Allocated_space [value_data_cell_offset]

 = value_data_cell_size) }

}

3.4 Unallocated space

The algorithm that calculates the unallocated space needs to first calculate the allocated

space as shown above and then subtract the allocated space from the file.

A hash Unallocated_space [] stores offsets and sizes of all unallocated cells, where

Unallocated_space [cell_offset] = cell_size.

previous_offset = 0x0

for each offset in sorted Allocated_space []

{

 current_offset = offset + Allocated_space [offset]

 if previous_offset < offset

 { Unallocated_space [previous_offset]

 = offset - previous_offset }

 previous_offset = current_offset

}

 21

To include the space between the last allocated cell and the end of a file, an extra value

needs to be added to the Allocated_space hash, before unallocated space is computed:

Allocated_space [file_size] = 0x0

3.5 Simpler way to compute unallocated space

Examination of unallocated space, computed as described above, has shown that the first

four bytes of each unallocated cell interpreted as a signed long number, equal to what

has been computed as the cell's size. This number is positive as opposed to cell sizes of

allocated cells, which are always negative. In fact, a PowerPoint presentation by Probert

(n.d.) includes the following information about a cell size:

 "positive = free cell, negative = allocated cell (actual size is –Size)".

The statement seems to implicate that, upon deletion, cell sizes are negated and

therefore previously deleted records could be found by searching for valid signatures

preceded by positive cell sizes, but tests have shown that it was not the case.

Russinovich (1999) explains that neighboring deleted cells are joined together and as a

result, unallocated cells can contain multiple keys and values, as opposed to allocated

cells that only contain a single key, value, list, etc. In conclusion, while it is not possible to

search for deleted records direct, it is possible to calculate unallocated space solely

based on cell sizes, and without parsing down the tree. The following simple algorithm

computes unallocated space without parsing the registry tree:

 22

do {
 if base_block { cell_size = -0x1000 }

else if bin_header { cell_size = -0x20 }

else { cell_size = signed long }

if cell_size > 0x0

 { Unallocated_space [offset] = cell_size }

last_cell_offset = offset

offset = offset + abs (cell_size)

} until cell_size = 0x0 or offset > file_size

if last_cell_offset < file size

{ Unallocated_space [last_cell_offset] =

file_size - last_cell_offset }

All cells can be classified as allocated or unallocated solely based on their size (positive

or negative). A base block and bin headers do not carry information about their sizes, but

their sizes are constant. The algorithm sets base block and bin header sizes to be

negative numbers in order to exclude them from the unallocated space.

Tests have shown that hive files often have some additional space after the last bin and

that this space often contains zeros, but in some case the extra space contains random

data, therefore the algorithm includes that space as unallocated.

3.6 Recovery of deleted data

Once the unallocated registry space is computed, registry keys and values can be found

by searching for their signatures. In recovery of deleted data, the project will focus on

recovery of keys and their values. The project sponsor has expressed that restoring

values without any connection to a key, could be compared to finding a text string in a

slack space. That being said, it could still be relevant to look for text strings in the registry

"slack", which can be achieved by displaying all unallocated space as a hex dump for

visual examination. The focus of the project will be to recover keys and their values, while

everything else will be included in a hex dump.

 23

3.6.1 Recovery of keys and their values

There are limits to what can be extracted from unallocated cells. Registry keys link back

to their parent keys. Whenever a key is restored, it is possible reconstruct the full key

path, assuming that ancestor keys are either not deleted, or deleted but recoverable.

Subkey links are removed on deletion, but if paths can be restored, they will show

eventual parent child relations between restored keys. Furthermore, links between keys

and their security descriptor are removed as well. Interestingly class name links are not

overwritten, and class name can therefore be extracted if it exists, but only few keys have

class names.

Figure 7 Deleted key

Deleted keys still carry valuable information about their timestamps and values. If a key

can be recovered, there is a good possibility that at least some of its values can be

recovered as well, if their value lists are intact.

Examination of the unallocated space has shown that in the beginning of a hive file

unallocated cells tend to be small, while larger unallocated cells are most often found

towards the end of a hive file. This can be explained by the functionality of Configuration

 24

Manager, as described by Russinovich (1999), where new cells are stored in a first found

unallocated cell of a sufficient size. Since key cells are always larger than 0x50 bytes (key

name starts at offset 0x50), while searching for deleted keys the algorithm can be

optimized by skipping all unallocated cells that are too small to hold a key cell. For the

same reason, the algorithm can stop if the remaining space of unallocated cell to be still

examined becomes too small. Finally, since the size of a cell is always a multiple of 0x8

bytes, the algorithm can skip 0x8 bytes of input at a time while looking for a cell signature.

Once a signature "nk" is found, the algorithm proceeds in a similar manner to the registry

parser, with the exception that key path is computed by following parent links. The final

part of the algorithm displays all unallocated space in both binary and hex formats.

for each offset in Unallocated_space[]

{

 if Unallocated_space [offset] > 0x50

 {

 max_ offset =

 offset + Unallocated_space [offset] - 0x50

 while (offset < max_ offset)

 {

 if key_cell_signature { Parse_Key }

 offset = offset + 0x8

 }

 }

}

for each offset in Unallocated_space[]

{

 display cell in binary and hex format

}

Parse_Key

{

 extract key name

 extract time stamp

 key_path = key_name

 while key_cell at parent_key_offset

 {

 key_path = parent_key_name . "\" . key_path;

 offset = parent_key_offset

 }

 Parse_Value_List (value_list_offset)

}

Parse_Value_List (offset)

{

for each value { Parse_Key_Value (value offset) }

}

Parse_Key_Value (offset)

{

 extract value name and type

 25

 if value_data_type == 0x80 { extract value data }

 else { Parse_Value_Data (value offset) }

}

Parse_Value_Data (offset)

{

 extract and translate value data

}

Functionality not shown above includes determination whether a full key path was

successfully computed; if the algorithm reached the root of the tree following parent links

then the key type of the key is either 0x2c or 0xac. If that is not the case, question marks

will precede the key path in order to show that the full key path could not be recovered.

Just like in the parser algorithm, data needs to be formatted and translated depending on

its type, for example timestamps, Unicode, ROT-13, etc.

3.6.2 Data validation

Deleted keys and values no longer reside in separate cells, because Windows kernel

adjoins neighboring deleted cells, and the information about the size of the previously

deleted keys and value cells is no longer available. This complicates matters because it is

not possible to determine where data belonging to a deleted unit stops and whether or not

it has been overwritten. Very careful validation of input is therefore necessary in order to

avoid incorrect outputs.

In order to reject corrupted data, retrieved key cells can be validated by checking if each

field of data has a vaid value. As already mentioned, offsets to a security descriptor and a

sub key list are set to 0xffffffff, while number of sub keys is set to 0x0 when a key is

deleted. If a key contains class name, it has to contain a valid offset to a class name cell,

and if there is no class name (class name length equals 0x0), a class name offset should

be set to 0xffffffff. Similar relation occurs between a number of values and a value list

offset.

 26

It can be difficult to decide valid ranges of data. Very relaxed validation might result in

many false positives, while too strict validation might result in false negatives, where valid

data is rejected. A valid timestamp can be defined as being in the range of 0x0 - hive file

timestamp, because a file timestamp represents the last time the file was written to,

therefore a key timestamp can never be larger than the file timestamp. The timestamp

range could be further improved by selecting the earliest possible timestamp - for

example the time when the Windows operating system was installed. Valid offsets can be

defined to be in range of 0x1000 - file size, to exclude the base block, but since all offsets

are relative to the first bin, as described previously, the actual valid range is 0x0 … file

size - 0x1000. Furthermore, Microsoft defines maximum key name length to be 255 (0xff)

characters, while maximum value name length is 16,383 (0x3ff). (MSDN, 2008b)

Table 12 Deleted key with values

Offset: Size (bytes): Contents: Valid data:

0x0004 0x2 signature nk
0x0008 0x8 timestamp 0x0 … file timestamp
0x0014 0x4 parent offset 0… file_size - 0x1000
0x0018 0x4 number of sub keys 0x0
0x0020 0x4 sub key list offset 0xffffffff
0x0028 0x4 number of values 0x1 … 0xffffffff
0x002a 0x4 value list offset 0… file_size - 0x1000
0x0030 0x4 security descriptor offset 0xffffffff
0x0034 0x4 class name offset valid offset (0xffffffff if none)
0x004c 0x2 key name length 0x1 … 0xff
0x004e 0x2 class name length 0x0 if no class name

Some additional fields, which were not used for parsing of the registry tree, can be used

for validation of input. As shown in Table 13, keys without any values (a number of values

field is set to 0x0), have their maximum value name length and maximum value data size

fields set to 0x0.

Table 13 Deleted key without values

Offset: Size (bytes): Contents: Valid data:

0x0004 0x2 signature nk
0x0008 0x4 timestamp 0x0 … file timestamp
0x0014 0x4 parent offset 0 … file_size - 0x1000
0x0018 0x4 number of sub keys 0x0
0x0020 0x4 sub key list offset 0xffffffff
0x0028 0x4 number of values 0x0

 27

0x002c 0x4 value list offset 0xffffffff
0x0030 0x4 security descriptor offset 0xffffffff
0x0034 0x4 class name offset 0xffffffff
0x0040 0x4 max value name length 0x0
0x0044 0x4 max value data size valid offset (0xffffffff if none)
0x004c 0x2 key name length 0x1 … 0xff
0x004e 0x2 class name length 0x0 if no class name

Similarly, recovered value cells can be validated in order to reject corrupted data. Data

type can have a value of 0x0 or 0x80, in the former case value data is stored separately

and the value data field should contain a valid offset. If data is stored in a value cell, the

maximum length of value data is 0x4 bytes. In both cases, value types can be in the

range 0x0 … 0xb, with the exception of values in SAM\Domains keys, where value types

can be in 500 and 1000 ranges, because account numbers are sometimes used as value

types. Named value field is set to 0x0 if value has no name (which Windows translates to

"Default"), in which case value name length should equal 0x0. If a value has a name,

named value field should be set to 0x0.

Table 14 Deleted value linking to value data

Offset: Size (bytes): Contents: Valid data:

0x0004 0x2 signature vk
0x0006 0x2 value name length 0x0 … 0x3ff
0x000b 0x1 data type 0x0
0x000c 0x4 value data offset 0… file_size - 0x1000
0x0014 0x2 named value 0 … 1

Table 15 Deleted value containing value data

Offset: Size (bytes): Contents: Valid data:

0x0004 0x2 signature vk
0x0006 0x2 value name length 0x0 … 0x3ff
0x0008 0x2 value data length 0x0 … 0x4
0x000b 0x1 data type 0x80
0x000c 0x4 value data 0 … 0xffffffff
0x0014 0x2 named value 0 … 1

In cases where value data is stored outside the value cell, there is no trivial way to decide

if the value data has been overwritten, as the cell does not contain any extra fields that

can be validated.

 28

The algorithm described in chapter 3.6.1 Recovery of keys and their values can thus be

improved by adding the following validation statements:

Parse_Key

{

 return if timestamp > file_timestamp

 return in not Valid_offset (parent_offset)

 return if number_of_sub_keys <> 0x0

 return if subkey_list_offset <> 0xffffffff

 return if security_descriptor_offset <> 0xffffffff

 return if class_name_offset == 0xffffffff

 and class_name_length <> 0x0

 return if class_name_offset <> 0xffffffff

 and class_name_length == 0x0

 return if key_name_length == 0x0 or key_name_length > 0xff

 return if class_name_length <> 0x0

 if number_of_values == 0x0

 {

 return if value_list_offset <> 0xffffffff

 return if max_value_name_length <> 0x0

 return if max_value_data_size <> 0x0

 }

 else

 {

 return if not Valid_offset (value_list_offset)

 return if max_value_name_length > 0x3ff

 }

 Parse_Value_List (value_list_offset)

}

Parse_Value_List (offset)

{

for each value

{

 if Valid_offset (value_offset)

 { Parse_Key_Value (value offset) }

}

}

Parse_Key_Value (offset)

{

 return if signature <> "vk"

 return if value_name_length > 0x3ff

 return if data_type <> 0x0 and data_type <> 0x80

 if data_type == 0x80

 {

 return if value_data_length > 0x4

 }

 else if data_type == 0x0

 {

 return if not Valid_offset (value_data)

 }

 return if named_data == 0x0 and value_name_length > 0

 return if named_data == 0x1 and value_name_length == 0

}

Valid_offset (offset)

{

 29

 return offset < file_size - 0x1000

}

3.6.3 Improved algorithm

The tests run by the project sponsor have shown that the algorithm retrieved keys that are

also present in the "live" registry. Restored keys had the same names and values, and

sometimes-even timestamps, as "live" keys but were stored at different offsets in registry

hive file. The study of how Windows registry functions perform key updates and deletions

is out of the scope of the project. However, it is not optimal to list recovered keys without

any indication of whether or not they still exist in the "live" registry. The algorithm will be

therefore improved to differentiate between deleted and updated keys, in order to provide

more complete information. The algorithm has to perform the following functions: compute

unallocated space, recover keys and their values from the unallocated space, and finally

to examine if recovered keys reside in the allocated space.

In order to provide as much documentation as possible for recovered data, the algorithm

will display offsets to recovered key and values. Since one cannot guarantee that all, if

any, values can be retrieved, the algorithm will display the number of values field, to

document how many values a key had upon deletion. Finally, each recovered key will be

looked up to determine if the key has been deleted or updated (still resides in live

registry). If the key still resides in the registry, the live key and its values will be parsed as

well to show what, if anything, has changed.

The desired output of the algorithm is as follows:

Deleted key ###

• key offset

• key name, including its full path name

• key timestamp (in square brackets)

• number of values

 30

• list of key values: �offset; value type; value; name; value data

…

Updated key ###

• key offset

• key name, including its full path name

• key timestamp (in square brackets)

• number of values

• list of key values: �value type; value; name; value data

Corresponding live key

• key offset

• key timestamp (in square brackets)

• number of values

• list of key values: �offset; value type; value; name; value data

…

Unallocated space ###

• offset range

• binary data

• hex dump

…

There are two different methods for calculation of unallocated space: by either parsing of

the registry tree or based on cell sizes. There are also two different ways of deciding

whether a restored key has a duplicate in the "live" registry. A key can be looked up in a

registry when it is recovered, or a hash of key names and their offsets can be created

beforehand and used for a quick look up of restored keys.

In a recent paper, Morgan (2008) has described how data hiding in a registry can easily

be accomplished by storing data in an unallocated cell and changing the size of the cell to

a negative number, thus marking it as used. The manipulated cell would not be

 31

referenced by the registry tree and would not be discovered if unallocated space were

computed based on cell sizes (looking for cells with a positive number in the size field).

Based on that valid observation, the final algorithm will therefore compute allocated space

by parsing the registry tree, and consequently any data hidden by manipulation of a cell

size will be recovered.

Since the algorithm already computes allocated space by parsing the registry tree, a hash

Live_key [] can be created, and store both key paths and offset, for efficient look up of

recovered keys later:

Parse_Key_Cell (offset)

{

 …

 Live_key [key_path] = offset

 …

}

The final version of the algorithm combines previously described algorithms to generate

output as described above, and can be summarized as follows:

Parse registry tree

 Compute allocated space

 For each key { Live_key [key_path] = offset }

Unallocated space = file space - allocated space

For each unallocated cell

 Search for "nk" signature

 Validate all fields

 Print key data

 For each value

 Validate all fields

 Print value data

 If Live_key[key]

 Print live key data

 For each live key value

 Print value data

Display unallocated space as binary and hex dump

 32

Chapter 4. METHODS AND REALIZATION

4.1 Methodology

There exist many different methodologies for approaching analysis and design in software

projects in the IT industry. Most of these based on an assumption that the structure of

input data and functional requirements can be discovered during an analysis phase and

the software design can then be derived from the analysis. The nature of this project is

more exploratory than most software projects, and it takes an experimental approach with

continual refinement of successive prototypes.

As mentioned earlier, the existing documentation of the Windows registry is incomplete.

This meant that the analysis had to be based not only on existing documentation but also

has to include knowledge gathered by thorough examination of Windows hive files.

Taking a start point in the existing information about the Windows registry hives a first

prototype of the registry parser was constructed. This prototype was used to analyze test

hive files from Windows XP and Windows Vista machines. The results were used to refine

the analysis and design and to improve the prototype. The final analysis and design

therefore represent the combined knowledge obtained in these iterations.

4.2 Tools

Microsoft's registry API functions (MSDN, 2008c) allow applications to retrieve and modify

or delete data. Those API functions have severe limitations in that their detailed

functionality and their implementation are not fully documented and they therefore

operate as black box functions. Furthermore, no functions are available to peek into the

 33

slack space of the registry. Finally, using Windows based API functions would limit the

tools to execution on a single platform.

Perl has been chosen as a programming language, because it is very flexible and

platform independent, and to accommodate the sponsor of the project, who implements

all his forensic tools in Perl. The functions that access input hive files have been placed in

a separate library, in order to keep scripts simple and to facilitate reuse of code.

Hex Workshop (Break Point Software, 2008) hex editor has been used to manually

examine binary files. Hive files have been collected from several machines by booting

them from a Linux disc, as hive files are locked while the Windows operating system is

running. On one occasion, ERUNT (Hederer, 2005) tool was used to obtain files without

shutting down the system. Perl scripts were interpreted using ActivePerl 5.10.0

(ActiveState, 2008) distribution, and screen shots of tests show outputs displayed in a

Perl Express (2005) editor.

4.3 Realization

The design has been changed numerous times. Once the algorithm that parses down the

registry tree was implemented, the original assumptions about the structure of registry

cells have been confirmed, rejected or modified by outputting one field at a time for each

registry cell. The discovery that unallocated cells have positive sizes resulted in the

redesign of the methodology to compute unallocated space in a more efficient manner.

There have been no assumptions about recovered data until that data was actually found

and examined, because at the beginning of the project it was unknown whether anything

useful will be found in the unallocated space at all. The surprising fact that recovered keys

can have duplicates in the "live" registry led to yet another change in the design, as it was

now necessary to verify whether keys were deleted or only updated. Once data was

recovered, it became clear that data was frequently overwritten. To avoid recovery of

 34

corrupted data, key and value cells had to be reexamined in order to find valid ranges for

as many fields as possible, thus including fields that have not previously been of much

interest. Valid ranges of data were defined by running tests on "live" data in order to

identify upper and lower bounds. Additionally outputs from both "live" and recovered keys

have been compared, in order to determine how key cells are modified upon deletion. The

final change in the design occurred when it became clear that computing of unallocated

space based on cell sizes has a weakness, in that an adversary can easily manipulate

cell sizes in order to hide data.

4.4 Tests

Test data consists of 47 hive files, collected from Windows Vista and Windows XP

machines, supplied by or copied with permissions from their owners. Hive files of types

COMPONENTS, SYSTEM and SOFTWARE were the most difficult to obtain due to their huge

sizes.

Figure 8 Test hive files

 35

Tests were performed throughout the whole life cycle of the project, but tests were

typically run on smaller hive files for efficiency reasons. The final tests were run on the

complete set of test files. The testing has been very successful, as it not only helped to

find small errors in the program code, but also led to new discoveries about Windows

registry hive files. The main limitation of the testing phase is the small set of hive files,

which were difficult to obtain.

The final tests cover the assumptions made about the registry hive files, parsing of the

registry tree, computation of unallocated space, and finally recovery of keys and their

values from unallocated space, including validation and interpretation of the recovered

data.

4.4.1 Hive file structure

To test the general assumptions about registry hive file's building blocks, such as base

block, bins and cells, a script hivestructure.pl (source code is listed in appendix

A.4) was developed. The script checks the size of each hive file and parses all files

sequentially in order to determine sizes of base blocks, bins, bin headers and cells. Test

numbers are included in the script to indicate which code segment performs the given

test.

Table 16 Hive file structure

Element Assumption Test number

file size multiple of 0x1000 bytes 1
base block 0x1000 bytes 2
bin multiple of 0x1000 bytes 3 (failed)
bin header 0x20 bytes 4
cell multiple of 0x8 bytes 5

 36

As Figure 9 shows, the assumption about a bin size being always a multiple of 0x1000

bytes was incorrect, as in a single file a bin header existed at an offset divisible by 0x400

bytes. Once this number was corrected, all test files passed the test successfully.

Figure 9 Bin header at an offset not divisible by 0x1000

4.4.2 Data fields

A script datafields.pl (source code is listed in appendix A.5) was implemented in

early stages of the project, to determine valid ranges of data fields, and most false

assumptions have been corrected at the early stages of the project. The final test was run

on the complete set of test files, and a single new error has been discovered; in few

cases, bins did not correctly link to each other, and broken chains were identified. This

caused a correction of the algorithm to compute allocated space described in chapter 3.3

Allocated space. Instead of searching for bins following bin header offsets to following

bins, the algorithm now searches for bin headers looking for their signatures at relevant

offsets. All other tests have completed successfully.

 37

Table 17 Base block validation

Field Assumption Test number

signature "regf" 1
timestamp >= all key timestamps 6
root key offset points to a root key 2

Table 18 Bin header validation

Field Assumption Test number

signature "hbin" 3
next bin offset points to next bin failed

Table 19 Key validation

Field Assumption Test number

cell size negative 4
signature "nk" 5
timestamp <= file timestamp 6
key type 0x2c and 0xac reserved for root keys 7
parent offset points to a key cell (except for root key) 8
subkey list offset 0xffffff if number of subkeys == 0x0 9
subkey list offset points to subkey list if number of subkeys > 0x0 10
value list offset 0xffffff if number of values = 0x0 11
value list offset valid offset if number of values > 0x0 12
security descriptor offset 0xffffffff or points to security descriptor cell 14
class name offset 0xffffffff or valid offset 15
key name length > 0x0 17

Table 20 Security descriptor validation

Field Assumption Test number

cell size negative 13
signature "sk" 14

Table 21 Class name

Field Assumption Test number

cell size negative 16

Table 22 Subkey list validation

Field Assumption Test number

cell size negative 18
signature "lf", "lh", "ri" or "li" 19
number of subkeys > 0x0 20
offsets point to subkey or subkey list 21

 38

Table 23 Value list validation

Field Assumption Test number

cell size negative 22
offsets point to values 23

Table 24 Value validation

Field Assumption Test number

cell size negative 24
signature "vk" 25
value name length <= 0x3ff 26
data type 0x0 or 0x80 27
value data length <= 0x4 if data type 0x80, > 0x4 otherwise 28
named value 0x0 if name length == 0x0, 0x1 otherwise 29
value data valid offset if data type == 0x0 30

Table 25 Linked data validation

Field Assumption Test number

cell size negative 31

4.4.3 Registry parser

The source code of the registry parser script called regparser.pl is listed in appendix

A.1, and sample outputs from the script (one screen shot per each input hive file) are

included in appendix B.1.

The functional test of the registry parser was performed by constructing a set of cases

that cover different input types. The script regparser.pl was slightly modified in order

to enumerate all keys and values for reference purposes. The script also outputs key and

sub key lists encountered in each tree path of a key, to identify cases where a given sub

key list type was used. Keys and values that satisfy the specified test cases were

retrieved from the output (see appendix B.2) and examined; if a key covers a test case all

of its values are also shown, and if a value covers a test case, its key and all other values

belonging to that key are shown as well. As Table 26 illustrates, the input test set covers

the specified test cases, with the exception of a single value type, which was not present

in any of the test input files.

 39

Table 26 Functional test of regparser.pl

Cell Field Test file Key/Value

key number of sub keys == 0 ntuser.dat key 4
key number of sub keys > 0 ntuser.dat key 3
key class name offset == 0xffffffff ntuser.dat key 3
key class name offset != 0xffffffff ntuser.dat key 312
values number of values == 0 ntuser.dat key 3
values number of values > 0 ntuser.dat key 4
sub key list signature "lf" ntuser.dat key 3
sub key list signature "lh" system key 4181
sub key list signature "ri" components key 510
sub key list signature "li" components key 510
value name length == 0 ntuser.dat value 1
value name length > 0 ntuser.dat value 2
value name encrypted with ROT-13 ntuser1.dat value 3880
value type REG_NONE software value 128458
value type REG_SZ ntuser.dat value 1
value type REG_EXPAND_SZ software value 128462
value type REG_BINARY components value 1746
value type REG_DWORD software value 5
value type REG_DWORD_BIG_ENDIAN sam1 value 31
value type REG_LINK sam1 value 5
value type REG_MULTI_SZ software value 128698
value type REG_RESOURCE_LIST system value 11436
value type REG_FULL_RESOURCE_DESCRIPTION - N/A
value type

REG_RESOURCE_REQUIREMENTS_LIST
system value 11435

value type REG_QWORD software value 105162
value type other sam value 12
value data length == 0 sam value 12
value data length <= 4 software value 5
value data length > 4 ntuser.dat value 1

Additionally all the keys and their values used for the purpose of the above test were also

retrieved from the output generated by the regp.pl offline registry viewer tool by Carvey

(2007a), its unaltered source code is listed in appendix A.6. Key names, timestamps,

value names, value types and value data output by both scripts (see appendix B.2) were

compared and a few differences were found and are explained below. The test has

confirmed that the script regparser.pl extracts and translates key and values

correctly.

 40

Table 27 Comparison of outputs from regparser.pl and regp.pl

Test file Key/Value Element Comparison

components key 510 name �
components key 510 timestamp �
components key 510 number of values �
components value 1746 value type �
components value 1746 value name �
components value 1746 value data �
components value 1747 value type �
components value 1747 value name �
components value 1747 value data �
components value 1748 value type �
components value 1748 value name �
components value 1748 value data �
ntuser.dat key 3 name �
ntuser.dat key 3 timestamp �
ntuser.dat key 3 number of values �
ntuser.dat key 4 name �
ntuser.dat key 4 timestamp �
ntuser.dat key 4 number of values �
ntuser.dat value 1 value type �
ntuser.dat value 1 value name �
ntuser.dat value 1 value data �
ntuser.dat value 2 value type �
ntuser.dat value 2 value name �
ntuser.dat value 2 value data �
ntuser.dat key 5 name �
ntuser.dat key 5 timestamp �
ntuser.dat key 5 number of values �
ntuser.dat value 3 value type �
ntuser.dat value 3 value name �
ntuser.dat value 3 value data �
ntuser.dat key 312 name �
ntuser.dat key 312 timestamp �
ntuser.dat key 312 number of values �
ntuser1.dat key 900 name �
ntuser1.dat key 900 timestamp �
ntuser1.dat key 900 number of values �
ntuser1.dat value 3880 value type �
ntuser1.dat value 3880 value name �
ntuser1.dat value 3880 value data �
ntuser1.dat value 3881 value type �
ntuser1.dat value 3881 value name �
ntuser1.dat value 3881 value data �
ntuser1.dat value 3882 value type �
ntuser1.dat value 3882 value name �
ntuser1.dat value 3882 value data �
ntuser1.dat value 3883 value type �
ntuser1.dat value 3883 value name �
ntuser1.dat value 3883 value data �
ntuser1.dat value 3884 value type �
ntuser1.dat value 3884 value name �
ntuser1.dat value 3884 value data �
sam key 12 name �
sam key 12 timestamp �
sam key 12 number of values �
sam value 12 value type see [1]

 41

sam value 12 value name �
sam value 12 value data see [2]
sam1 key 5 name �
sam1 key 5 timestamp �
sam1 key 5 number of values �
sam1 value 5 value type �
sam1 value 5 value name �
sam1 value 5 value data see [2]
sam1 key 31 name �
sam1 key 31 timestamp �
sam1 key 31 number of values �
sam1 value 31 value type �
sam1 value 31 value name �
sam1 value 31 value data see [2]
software key 7 name �
software key 7 timestamp �
software key 7 number of values �
software value 5 value type �
software value 5 value name �
software value 5 value data �
software key 86093 name �
software key 86093 timestamp �
software key 86093 number of values �
software value 105162 value type see [3]
software value 105162 value name �
software value 105162 value data see [3]
software key 93378 name �
software key 93378 timestamp �
software key 93378 number of values �
software value 128458 value type �
software value 128458 value name �
software value 128458 value data see [4]
software key 93380 name �
software key 93380 timestamp �
software key 93380 number of values �
software value 128460 value type �
software value 128460 value name �
software value 128460 value data �
software value 128461 value type �
software value 128461 value name �
software value 128461 value data �
software value 128462 value type �
software value 128462 value name �
software value 128462 value data �
software value 128463 value type �
software value 128463 value name �
software value 128463 value data �
software key 93435 name �
software key 93435 timestamp �
software key 93435 number of values �
software value 128697 value type �
software value 128697 value name �
software value 128697 value data �
software value 128698 value type �
software value 128698 value name �
software value 128698 value data see [5]
system key 4181 name �
system key 4181 timestamp �
system key 4181 number of values �
system value 11435 value type �

 42

system value 11435 value name �
system value 11435 value data �
system value 11436 value type �
system value 11436 value name �
system value 11436 value data �

[1] regp.pl did not display any value type as it only allows value types in ranges

0x9…0xa. The actual value type is 1007, as sometimes account numbers are used as

value types in SAM hive files.

[2] For some value types regp.pl displays value data as 0, even though the value has

no data. Tests were rerun to show the length of value data and confirmed that those

values do not have any data (data length is set to 0x0) and that therefore regparser.pl

handles the data field correctly.

[3] regp.pl does not implement the value type REG_QWORD and as result displays

data as text

[4] In the case of value type REG_NONE regp.pl translated the value data incorrectly

[5] There is a difference in how the two scripts format values of the type REG_MULTI_SZ;

regparser.pl inserts semicolons to separate the retrieved strings.

Finally, a test was run to compare the numbers of keys and values retrieved by both

scripts (key and value counters were inserted in both scripts). In most cases, both scripts

retrieved the same amount of keys and values. The script regp.pl failed to complete

successfully in two cases, therefore test data could not be produced. The script failed on

files with root key of type 0xac; the initial loop of the script searches the file for a root key

node of type 0xc and could not terminate when the input file contained a root key of type

0xac.

 43

Table 28 Number of keys and values recovered by regparser.pl and regp.pl

Test file regparser.pl
keys/values

regp.pl
keys/values

Result

bcd-template 190/151 190/151
bcd-template2 99/75 99/75
components 61246/126110 61246/126110
components1 61660/117349 61660/117349
components2 65413/135986 65413/135986
default 725/2672 725/2672
default1 9200/11430 5204/7446 failed
default2 335/1504 335/1504
default3 304/1338 304/1338
default4 447/2174 447/2174
ntuser.dat 1397/7093 1397/7093
ntuser1.dat 1144/5561 1144/5561
ntuser2.dat 3062/14524 3062/14524
ntuser3.dat 10319/30861 10319/30861
ntuser4.dat 17691/65993 17691/65993
ntuser5.dat 10249/29992 10249/29992
ntuser6.dat 3720/13212 3720/13212
ntuser7.dat 473/881 473/881
ntuser8.dat 1724/10565 1724/10565
ntuser9.dat 3076/17012 3076/17012
ntuser10.dat 2488/13536 2488/13536
ntuser11.dat 2030/12773 2030/12773
ntuser12.dat 2164/11802 2164/11802
ntuser13.dat 9844/27648 9844/27648
sam 54/61 54/61
sam1 78/84 78/84
sam2 52/58 52/58
sam3 82/97 82/97
sam4 52/59 52/59
security 225/224 225/224
security1 326/335 326/335
security2 75/74 75/74
security3 90/99 90/99
security4 81/80 81/80
software 105061/163690 61464/112036 failed
software1 190526/291428 116546/203083 failed
software2 110053/183434 64550/119830 failed
software3 105619/163742 N/A N/A
software4 150372/228628 N/A N/A
system 13421/41543 11483/37667 failed
system1 16358/49704 14415/45824 failed
system2 28474/65071 25803/60018 failed
system3 27020/58000 24342/52930 failed
system4 32955/71933 30279/66860 failed
userdiff 425/905 425/905
userdiff1 425/905 425/905
usrclass.dat 3963/31103 3963/31103

In several cases, the script regparser.pl retrieved more keys and values, because test

files have a tree path containing "ri"->"lh" subkey list combination, which regp.pl does

not support. As a result, "lh" sub key list was not parsed and regp.pl did not retrieve any

 44

of the keys residing in this branch of the tree. The test has shown that regparser.pl

parses the registry tree more successfully than regp.pl script.

4.4.4 Calculation of unallocated space

A script called regslack.pl (source code is included in appendix A.2) implements both

the calculation of the unallocated space and the recovery of deleted keys and values. The

chosen method for the calculation of the unallocated space parses the registry tree in

order to calculate the space referenced by the tree and computes the unallocated space

as all the remaining space of the hive file. If all of the allocated space of the registry was

accessed by parsing the registry tree, all the remaining cells should have positive sizes.

The tests performed on the complete set of test files have surprisingly shown that it is not

always the case.

Three test files (ntuser13.dat, software4 and system4) were copied from the

running system using ERUNT tool developed by Hederer (2005). Tests have shown that

those files have somewhat different structure than files copied from shutdown systems,

and contained keys and value cells with negative sizes, that were not reached by parsing

the registry tree. Additionally a hive file included in a tool DVD (Carvey, 2007b) called

ntuser1.dat exhibits the same behavior which indicates that the file was also retrieved

from a running system. Since analyzing hive files from a running system is out of the

scope of this project, those files were excluded from the following tests. Once those files

were excluded, the script hivestructure.pl was rerun and bin headers were now only

found at offsets divisible by 0x1000 bytes, showing that the original assumption about bin

sizes seems to be correct in a post mortem scenario.

Code was added to regslack.pl to display cells with negative sizes that were not

reached by parsing the registry tree. As sample outputs show (see appendix B.3), even

after the exclusion of the files copied from live system, SOFTWARE and SYSTEM hive files

contain cells with negative sizes in the computed unallocated space. Those files do not

 45

seem to contain any offsets that reference those cells. Those mysterious cells do not

contain any live keys or values, but in a couple of software hive files deleted keys and

values were found. There is not enough test data to conclude whether this mystery only

occurs in SOFTWARE and SYSTEM files. The approach to compute unallocated space as

not referenced by the tree is more effective, as those keys and values would not been

found if unallocated space was computed based on cell sizes. The algorithm was slightly

adjusted to clearly indicate the cases were keys are recovered from cells with negative

sizes.

Figure 10 Recovered keys from unallocated cells with negative sizes

 46

4.4.5 Recovery of deleted keys and their values

The table below shows the comparison of total numbers of "live", recovered and rejected

keys and values for each test file. There is not enough test data to look for eventual

patterns. Since key and values must have been deleted in order to reside in unallocated

space, it makes sense that DEFAULT files produce small number of recovered keys, as

they are updated infrequently. The more keys have been deleted since the operating

system was installed, the more keys should be recovered, therefore recently installed or

little used systems will produced less recovered keys. The number of rejected keys and

values has to be related to the number of inserted keys and values (which have

overwritten the previously deleted data). It also seems reasonable that the number of the

recovered keys and values influences the number of rejected keys and values.

Table 29 Numbers of "live", recovered and rejected keys and values

Test file Live
keys/values

Recovered
keys/values

Rejected
keys/values

bcd-template 190/151 0/0 0/0
bcd-template2 99/75 0/0 0/0
components 61246/126110 0/0 0/0
components1 61660/117349 41/58 0/0
components2 65413/135986 125/54 0/0
default 725/2672 0/0 0/0
default1 9200/11430 6/1 0/2
default2 335/1504 0/0 0/0
default3 304/1338 0/0 0/0
default4 447/2174 0/0 0/0
ntuser.dat 1397/7093 15/24 0/2
ntuser2.dat 3062/14524 15/10 0/39
ntuser3.dat 10319/30861 0/0 2/0
ntuser4.dat 17691/65993 1/14 0/0
ntuser5.dat 10249/29992 2/0 0/0
ntuser6.dat 3720/13212 9/35 0/0
ntuser7.dat 473/881 0/0 0/0
ntuser8.dat 1724/10565 0/0 0/0
ntuser9.dat 3076/17012 19/40 0/10
ntuser10.dat 2488/13536 1/0 0/0
ntuser11.dat 2030/12773 1/0 0/0
ntuser12.dat 2164/11802 0/0 0/0
sam 54/61 4/5 0/0
sam1 78/84 0/0 0/0
sam2 52/58 1/1 0/0
sam3 82/97 0/0 0/0
sam4 52/59 6/7 0/0
security 225/224 2/1 0/1

 47

security1 326/335 0/0 0/0
security2 75/74 6/6 0/0
security3 90/99 0/0 0/0
security4 81/80 values 0/0 0/0
software 105061/163690 684/112 2/3
software1 190526/291428 5059/5986 6/147
software2 110053/183434 415/929 7/219
software3 105619/163742 16/30 0/2
system 13421/41543 0/0 0/0
system1 16358/49704 7090/18268 93/2261
system2 28474/65071 14198/31340 328/680
system3 27020/58000 11327/22800 324/43
userdiff 425/905 0/0 0/0
userdiff1 425/905 0/0 0/0
usrclass.dat 3963/31103 0/0 0/0

Also 28 keys in software1 file and 8 keys in software2 file were recovered from cells

not reached by the tree but carrying negative sizes.

A code segment was inserted into regslack.pl to output the keys and values, which were

rejected by the algorithm for being corrupted. . As sample outputs show in appendix B.4,

the algorithm does a very good job at rejecting corrupted data. Rejected keys have for the

most part no timestamp, and if they do, key names are clearly invalid, as they contain

arbitrary data instead of ASCII text. Keys have mostly obscure value types, while valid

types are in range 0-11 or 500 and 1000 ranges in SAM files. In cases where value type

is within the valid range, the name and the value data show that the retrieved data was

corrupted.

Appendix B.5 shows sample outputs with recovered keys and values, and appendix B.6

list a full output from a single (small) hive file. The recovered data is intact in the majority

of cases and is displayed as it was intended. However, as previously discussed, there are

no guarantees that recovered key names, value names or value data are not overwritten.

Figure 11 Recovered data that is partially overwritten shows an example output were two

of the recovered values seem to have been partially overwritten. It is impossible to

completely avoid this problem, because tests of "live" registry values have shown that

value data strings can contain any characters.

 48

Figure 11 Recovered data that is partially overwritten

Finally, as below figure shows, a recovered key and a "live" key can refer to the same

value cell. The two key cells reside at different offsets, but point to a value at the same

offset, which indicates that the value resides in the "live" registry and can therefore be

updated at any time.

Figure 12 Recovered key and "live" key referring to the same value

 49

The above findings lead to a conclusion that despite the careful validation, it is not

possible to guarantee that no corrupted data will be retrieved or that the retrieved data

does not belong to another key or value.

 50

Chapter 5. RESULTS AND EVALUATION

5.1 Results

The project delivers a documentation of hive file structure, demonstrates that keys can be

recovered from unallocated space of the registry hive files, and implements a tool that can

achieve that.

The main limitation of the project is a limited set of test hive files. Files originate from only

two Windows platforms: Windows XP and Windows Vista (32-bit version) and all hive files

originate from English versions of operating systems.

At the DFRWS conference in August 2008 Morgan (2008) presented a new paper on

recovering deleted data from the Windows registry while I presented a demo of the

developed prototype. There was a considerable interest in the subject from the attendees

of the conference, which confirms the need for tools that recover deleted keys from

unused space of the registry.

Morgan's algorithm calculates unallocated space based on cell sizes (positive cell size

implies that the cell is unallocated). If a key signature is located in unallocated space, the

key is recovered and the data segment is marked as allocated. The algorithm proceeds in

a similar manner to recover value cells and security descriptor cells from the remaining

unallocated space and finally outputs whatever is left as a hex dump. Morgan's algorithm

has a weakness in that if data is partially overwritten, it may contain another key or value

that will not be parsed by the algorithm. For example, a key name length that contains an

arbitrary large number will result in recovery of a large chunk of data, displaying it as text

and marking it as already parsed. Finally, Morgan does not correlate his results with the

active registry entries, missing out on the fact that a recoverd key migh not have been

deleted but only updated.

 51

Morgan makes a valid observation that cell sizes can be manipulated to hide data, and

that therefore calculation of unallocated space based on cell sizes would not discover the

hidden data. A comparison of both methods has shown that calculation of unused space

as not referred to by registry tree results in recovery of more keys. It is unclear why some

cells are marked as allocated but seemingly not referenced by the registry tree; however,

this project has shown that those cells can contain deleted keys. This leads to a

conclusion the that method proposed in this dissertation for computing unallocated space,

as a space not referred to by the registry tree is more effective.

Since any application can access a registry, data does not always conform to

specifications. The delivered tool displays all binary data as a hex dump; therefore, any

text stored as binary data will be readable. Wong (2007) argues that text strings could be

encoded in hexadecimal format and stored as strings. The final algorithm could be easily

modified to display string values as both strings and hex dump to eliminate that

possibility.

The main challenge in recovery of deleted keys and values is validation of data. Key

names and value names are stored as last fields, if only the last field is overwritten the

algorithm will not detect that and corrupted data will be recovered. The same problem

occurs when value data is stored in a separate cell, as no other fields can be validated.

The final mystery is why deleted keys sometimes refer to "live" values. Although seldom

occurring, this phenomenon can result in recovery of values that could have been

modified after a key referring to them was deleted. The final algorithm could be modified

to indicate if a recovered value is also referred by a "live" key, to alert a forensic

investigator that the value might have been changed.

5.2 Evaluation

"Jolanta Thomassen has invested a considerable amount of time and effort into a

rather unique thesis project and has accomplished a great deal in a relatively short

 52

amount of time. When she first approached me via email in the Spring of 2008, asking for

thoughts or ideas for a thesis project, I offered her the idea of exploring the possibility of

locating and extracting deleted Registry keys from within unallocated space within the

hive files themselves. At the time, online searches for this subject matter revealed

questions asked as far back as 2001, but there had been relatively little work, if any, done

in the ensuing time. Ms. Thomassen picked up the subject and delved into what might

appear to be extremely technical and “arcane” material and in doing so, has done a

fantastic job in not only understanding the material, but also programmatically

demonstrating her understanding through the development of Perl code to locate and

extract those deleted cells.

Throughout the development of her thesis, Ms. Thomassen shared her Perl script and

methodology with me. As an incident responder and forensic analyst in the corporate

consulting field in the United States, I could immediately see the usefulness and

applicability of the fruits of her labor. Forensics analysts do not rest an entire examination

on a single artifact, and Ms. Thomassen’s research and development of working code has

opened yet another door for us, revealing another avenue of analysis. The code itself

allows us to verify both her findings and ours, while automating the collection of data. All

of this is extremely valuable to forensic analysts.

At the time she was working on her thesis, to the best of my knowledge, she was the

only person conducting research into this field. At the DFRWS conference in Baltimore,

MD, in August 2008, another researcher, also working in isolation, presented a paper on

his own findings.

Ms. Thomassen’s research and dedication to seeing this project through to

completion have resulted in a very valuable contribution to the field of computer forensic

analysis. I and others will forever be in her debt for taking on this arduous task and

providing not only an understanding of the technical aspects of her research but also

working code to demonstrate it." (Carvey, 2008b)

 53

Chapter 6. CONCLUSIONS

6.1 Lessons Learned

The project has gathered, verified, and extended the existing knowledge about registry

hive files. The project proposes a method for calculation of the unallocated space as

space not reffered to by the registry tree and shows that the method is more effective

than calculation based on cell sizes. The main observation is that deleted keys can be

recovered from the registry and Windows registry forensics should include analysis of the

unallocated space to obtain more complete information about the machine and activities

performed on it.

6.2 Prospects for Further Work

The project answers some questions and poses several new ones. The documentation of

registry hives is still incomplete, many cell fields remain undocumented, and some cells

marked as allocated do not seem to be referenced by the registry. There is not enough

knowledge about how Windows registry functions perform updates and deletions or how

different registry cleaners modify the registry. Applications that access the registry

typically use Windows registry functions, but tools that modify registry without use of

those functions are being developed. An editor that can modify registry hive files could

give a more complete indication of a valid structure of hives and valid ranges of data, by

testing if a modified file is accepted or rejected by the Windows operating system. The

existing registry forensic tools should include analysis of keys residing in unallocated

space to obtain a more complete information about the investigated machine, user

activities and timeline information.

 54

REFRENCES CITED

ActiveState (2008) ActivePerl - The complete and ready-to-install Perl distribution. [Online]
Available from: http://www.activestate.com/Products/activeperl/feature_list.mhtml
(Accessed: 02 November 2008)

B.D. (n.d.) WinReg.txt [Online] Available from:
http://home.eunet.no/pnordahl/ntpasswd/WinReg.txt (Accessed: 02 November 2008)

BreakPoint Software, Inc. (2008) Hex Workshop, the Professional Hex Editor. [Online]
Available from: http://www.hexworkshop.com/ (Accessed: 02 November 2008)

Carvey, H. (2007a) regp.pl. Offline Registry Parser. Windows Forensic Analysis Including
DVD Toolkit. Elsevier Science. ISBN-13: 9781597491563

Carvey, H. (2007b) Windows Forensic Analysis Including DVD Toolkit. Chapter 4:
Registry Analysis. Syngress. ISBN-13: 9781597491563. pp. 125-189.

Carvey, H. (2008a) (keydet89@yahoo.com), 16 March 2008. RE: Would you be my MSc
IT dissertation sponsor? Email to JT (jolantathomassen@hotmail.com).

Carvey, H. (2008b) (keydet89@yahoo.com), 09 October 2008. RE: Re: analysis and
design Email to JT (jolantathomassen@hotmail.com).

Carvey, H. (2008c) LinkedIn public profile. [Online] Available from:
http://www.linkedin.com/in/hcarvey (Accessed: 02 November 2008)

Carvey, H. (2008d) RegRipper. Windows Forensic Analysis. Dedicated to incident
response and computer forensic analysis topics, with respect to Windows 2000, XP,
2003, and Vista operating systems. [Online] Available from:
http://www.regripper.net/RegRipper/Documents/regripper.pdf (Accessed: 02
November 2008)

Chang, K et al. (2007) Initial Case Analysis Using Windows Registry in Computer
Forensics. Future Generation Communication and Networking. Volume 1, 6-8 Dec.
2007 Page(s):564 – 569. [Online] DOI: 10.1109/FGCN.2007.151 (Accessed: 02
November 2008)

Clark, P. (2005) Security Accounts Manager [Online] Available from:
http://beginningtoseethelight.org/ntsecurity/index.php (Accessed: 02 November 2008)

Hederer, L. (2005a) ERUNT. The Emergency Recovery Utility NT. Registry Backup and
Restore for Windows NT/2000/2003/XP/Vista. [Online] Available from:
http://www.larshederer.homepage.t-online.de/erunt/ (Accessed: 02 November 2008)

Hederer, L. (2005b) NTREGOPT. NT Registry Optimizer. Registry Optimization for
Windows NT/2000/2003/XP/Vista. Detailed Information. [Online] Available from:
http://www.larshederer.homepage.t-online.de/erunt/ (Accessed: 02 November 2008)

Microsoft (2002) Microsoft® Computer Dictionary, Fifth Edition. Microsoft Press. ISBN
9780735614956

 55

Microsoft (2006) Regedit.exe Cannot Search for DWORD or Binary Data. KB161678

[Online] Available from: http://support.microsoft.com/kb/161678 (Accessed: 02
November 2008)

Morgan, T.D. (2008) Recovering deleted data from the Windows registry. Science Direct.
Digital Investigation 5 (2008) S33 – S41 [Online] Available from:
http://www.dfrws.org/2008/proceedings/p33-morgan.pdf (Accessed: 02 November
2008)

MSDN (2008a) FILETIME Structure. [Online] Available from:
http://msdn.microsoft.com/en-us/library/ms724284(VS.85).aspx (Accessed: 02
November 2008)

MSDN (2008b) Registry Element Size Limits [Online] Available from:
http://msdn.microsoft.com/en-us/library/ms724872(VS.85).aspx (Accessed: 02
November 2008)

MSDN (2008c) Registry Functions [Online] Available from: http://msdn.microsoft.com/en-
us/library/ms724871%28VS.85%29.aspx (Accessed: 02 November 2008)

Nordahl-Hagen, P. (2008) ntreg.h - NT Registry Hive access library, constants &
structures [Online] Available from: http://home.eunet.no/pnordahl/ntpasswd/
(Accessed: 02 November 2008)

Perl Express (2005) A Free Perl IDE/Editor for Windows. Version 2.5. [Online] Available
from: http://www.perl-express.com/ (Accessed: 02 November 2008)

Probert, D.B. (n.d.) Windows Kernel Internals. NT Registry Implementation. Microsoft
Corporation. [Online] Available from: http://www.i.u-
tokyo.ac.jp/edu/training/ss/lecture/new-documents/Lectures/09-Registry/Registry.ppt
(Accessed: 02 November 2008)

Russinovich, M. (1999) Inside the Registry. Windows NT Magazine. [Online] Available
from: http://technet.microsoft.com/en-us/library/cc750583.aspx (Accessed: 02
November 2008)

Wong, L. W. (2007) Forensic Analysis of the Windows Registry. Forensic Focus. [Online]
Available from:
http://www.forensicfocus.com/index.php?name=Content&pid=73&page=1 (Accessed:
02 November 2008)

