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ABSTRACT 

 

FORENSIC ANALYSIS OF UNALLOCATED SPACE 

IN WINDOWS REGISTRY HIVE FILES 

By 
 

Jolanta Thomassen 
 
 

Windows registry is an excellent source of information for computer forensic purposes. The 

registry stores data physically on a disk in several hive files. Just like a file system, registry hive 

files contain used and free clusters of data. So far, the focus in Windows registry forensics has 

been on active keys and values that can be viewed with Windows registry editors. It has been a 

mystery, whether deleted or updated keys can be recovered from registry hive files, in a similar 

way that deleted files can be recovered from a file system. 

This project studies the physical structure of the binary registry hive files and shows that pre-

viously deleted or updated keys and their values indeed remain in the unallocated space until 

they become overwritten. The project proposes an algorithm for computing of unallocated 

space in registry hives as well as methods for recovery of deleted keys remaining in the unallo-

cated space. 
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Chapter 1.  INTRODUCTION 

1.1 Scope 

Windows registry stores keys and values in physical binary hive files. Used (or allocated) 

space in registry hive files contains active registry keys and values. The remaining space 

in registry hives constitutes an unallocated space.  

The project's goal is to find and examine the unallocated space in registry hive files and to 

recover any relevant data remaining there. The project's scope is limited to forensic 

analysis of hive files performed in a postmortem investigation, where an investigator 

works with a disk image taken from a shutdown system. Hive files on a running system 

may contain added information, such as keys describing current hardware settings on a 

running machine, and therefore have a different structure than hive files copied from a 

shutdown system. Examination of unallocated space of registry hives requires 

considerable knowledge of the structure of hive files and how keys and values are stored 

and relate to one another. The project studies the allocated space in binary registry hive 

files to gain enough information to both identify the unallocated space and to interpret 

data remaining there. The final goal of the project is to recover any data that may be of 

interest to forensic investigators from the unallocated space.  

1.2 Problem Statement 

Harlan Carvey, the sponsor of the project, has been involved in incidence response and 

computer forensic analysis since 2000. He has been widely published in "Security Focus", 

"Information Security Bulletin", and "Digital Investigation Journal". He is the author of 

"Windows Forensics and Incident Recovery" published in July 2004 by AWL, and the au-
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thor of "Windows Forensic Analysis" published in April 2007 by Syngress/Elsevier. His 

current interests include forensic analysis and incident response, and registry and physi-

cal memory analysis. (Carvey, 2008c) 

“From the perspective of forensic analysis, there are several areas of interest surrounding 

the Windows Registry.  Most of the attention focuses on what's in the actual hive files 

themselves, and some attention has recently been focused on extracting Registry data 

(hive files, keys, values, etc) from within memory dumps and the pagefile.  However, little 

if any attention has been given to remnants left behind in hive files that are not part of the 

active hive file itself; Registry "slack space".  These areas may possibly reveal indications 

of previously installed applications or user activity, and be extremely valuable to 

investigations, particularly those pursued by law enforcement.” (Carvey, 2008a)  

1.3 Approach 

The first phase of the project studies the structure of registry hive files by gathering and 

corroborating the existing knowledge. In the second phase, a method for calculation of 

unallocated space is developed. Subsequently, the final phase focuses on recovery of 

relevant data from the unallocated space.  

Since there is no previous research of the unallocated space in registry hive files, the 

project takes an experimental approach, where stages of analysis, design and 

implementation are performed simultaneously and refined continually. All tools are 

implemented in Perl to accommodate the sponsor of the project, who implements all his 

forensic tools in this language.  
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1.4 Outcome 

The project provides a documentation of the structure of relevant parts of registry hive 

files, based on examination of the available set of test hive files. Since the test data set is 

limited, the project delivers added tools that can examine if a hive file conforms to the 

assumptions made about the hive file structure. If any of the assumptions fail in further 

tests, the final algorithm can be refined.  

The project proposes and implements an algorithm for calculation of unallocated space 

and recovery of data. Finally, the project shows that keys can in fact be recovered from 

the unallocated space; however, there is a possibility that, despite careful validation, the 

recovered data might have been partially overwritten. 
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Chapter 2.  BACKGROUND AND REVIEW OF LITERATURE 

The Windows registry is "A central hierarchical database used in Microsoft Windows 98, 

Windows CE, Windows NT, and Windows 2000 used to store information that is 

necessary to configure the system for one or more users, applications and hardware 

devices. The Registry contains information that Windows continually references during 

operation, such as profiles for each user, the applications installed on the computer and 

the types of documents that each can create, property sheet settings for folders and 

application icons, what hardware exists on the system, and the ports that are being used." 

(Microsoft, 2002)  

Available research in Windows registry forensic focuses on identification of keys that are 

relevant for forensic examiners and possibilities for data hiding. Since registry hive files 

can have hundreds of thousands of entries, forensic investigators need to familiarize 

themselves with the registry to know where to look for evidence.  Carvey (2007b) shows 

why registry information is valuable to forensic examiners and explains where to look for 

information, such as system configuration and user activities. His work continues in his 

current development of the Regripper tool (Carvey, 2008d), which correlates types of 

information with registry keys, so forensic examiners can extract only data that is relevant 

to their investigation.  Chang (2007) focuses on registry entries that provide the 

information about OS installation and last shutdown times, the system time zone 

information as well as information about mounted storage devices. Wong (2007) 

discusses keys of interest and opportunities for data hiding in the registry. An adversary 

can for example insert text data as a binary value, although the data would be disclosed if 

the value was displayed in a hex editor. A more sophisticated technique would involve 

converting a text string into a hexadecimal notation and storing it in a value of a string 

type. Malware can be hidden and run covertly from keys that automatically execute 

programs.  
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Microsoft registry editors: regedit.exe and regedt32.exe stop displaying key values if they 

encounter a key with a name longer than 256 characters (Wong, 2007). Regedit.exe has 

another limit in that it can only perform searches on data stored as strings (Microsoft, 

2006). This implies a need for independent tools that can parse registry hive files. 

Windows applications access the registry using a set of Microsoft registry access 

functions (MSDN, 2008c). Microsoft does not provide any documentation of registry hive 

files or registry access functions; neither does it provide any tools that can recover 

deleted data from the registry hives. However, a few tools extract active registry keys and 

values from registry hives without use of Microsoft's API functions. They shed some light 

on how binary registry hives can be parsed. Carvey (2007a) implements an offline registry 

viewer that parses binary registry hive files and retrieves "live" keys, their timestamps, 

and values. Another tool that, will be used as a reference, implements a library of C 

functions that access data in registry hives (Nordahl-Hagen, 2008).     

A few takes on documentation of registry hives are also available. Russinovich (1999) 

provides a first explanation of the registry's building blocks: physical data blocks and 

logical bins and cells that contain registry keys and values. Further publications provide 

descriptions of how different cells are structured, the first one published by an unknown 

author B.D. (n.d.) and a more comprehensive one by Clark (2005). Both publications are 

incomplete and limited to Windows 2000 versions, thus excluding new artifacts introduced 

in Windows XP and Vista. 

Finally, registry cleaner tools claim to manipulate the unallocated space is in registry hive 

files. For example, a tool NTREGOPT by Hederer (2005b) claims to remove registry "slack" 

space that may contain previously deleted keys and values, by rebuilding the registry 

tree. 
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Chapter 3.  ANALYSIS AND DESIGN 

The main purpose of this project is to decide whether any information about previously 

deleted or changed keys can be recovered from registry hive files. The registry contains 

not only information about keys and their values but also data used by the Windows 

Operating System to access and manipulate hive files, including in-memory operations. 

The focus of this project is to study hive files in a postmortem investigation, where an 

investigator works with a disk image of a shutdown system. The project will focus on data 

that seems most relevant for a computer forensic examination: keys, their values, and 

timestamps - critical information for investigations that need timeline information.  

Registry hives have a tree structure where the root key points to its subkeys, which point 

to their child subkeys. Keys also contain offsets (pointers) to their values, security settings 

and class name. Information contained in the registry is stored in cells - logical units of 

data that also contain information about their size. All the cells referred to by the registry 

tree form an allocated space within the registry hive file. The questions to be answered 

are whether unallocated space that is not referred to by the registry tree contains any 

useful information about deleted or updated keys and values, and whether and how this 

information can be recovered.  

To solve the problem, one has to gain an understanding of how hive files are structured. 

Microsoft have never released any documentation of registry hives, however some takes 

on at documenting hive files have been made, unfortunately all incomplete and 

sometimes inaccurate. The analysis and design will consist of two main parts: parsing of 

the registry tree to learn how keys and values are stored in registry hive files, followed by 

calculation of unallocated space. Finally, if possible, deleted or updated keys will be 

recovered. The main purpose of the first phase is to confirm, verify, and extend the 

available information about the structure of registry hives, and the following stages will 

use the gained knowledge to calculate and examine the unallocated space.  
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Because of the exploratory nature of the project, analysis, design and prototyping have 

been performed in parallel and revised continually; the following analysis and design 

represent therefore the combined knowledge gained in these iterations.  

3.1 Registry hive structure 

The first description of how the Windows Operating System physically manages the 

registry is provided by Russinovich (1999). The registry hive file contains blocks, bins and 

cells. Blocks are 0x1000 (4096) bytes in size, and registry hive files are therefore always 

a multiple of 0x1000 bytes in size. The first block of the registry is called a base block, 

and all the following blocks contain bins, that contain cells. The base block contains 

general information about the hive file. Bins are logical units of data and can occupy one 

or several blocks. All bins contain a bin header followed by multiple cells. Cells are the 

smallest units that contain registry data, and their size is always a multiple of 0x8 bytes. 

The last cell of a bin always fills out the remaining space of a bin, meaning there is never 

any space in a bin that does not belong to a cell. 

Figure 1 Registry hive file 
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There registry contains the following types of cells (some have signatures while others do 

not): 

• key cell "nk" 

• class name cell 

• security descriptor cell "sk" 

• subkey list cell "lf", "lh", "ri", "li" 

• value list cell 

• value cell "vk" 

• value data cell 

Registry key cells form an unbalanced tree, where the root key cell forms the root of the 

tree, and where keys contain pointers to their subkeys (child keys). Each key also 

contains a pointer (offset) back to its parent key. Subkeys are sorted alphabetically; 

following down the tree in a preorder manner, keys can be retrieved in alphabetical order 

- a Windows feature that allows efficient search for a key given its full name. 

(Russinovich, 1999) 

Figure 2 Registry tree 
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Besides pointers to subkeys, each registry key contains pointers to its parent key, value 

list, class name (if any), and security descriptor. Value lists contain pointers to key values, 

and if value data is stored in a separate cell, value cells point to value data cells.  

Figure 3 Registry key 

 

The sources used for documentation of base block, bin headers and cells include Clark 

(2005), B.D.(n.d), Carvey (2007a) and Nordahl-Hagen (2008). All of those sources are 

closely connected in that Nordahl-Hagen (2008) uses findings by B.D. (n.d.), while Carvey 

(2007a) uses findings published by Nordahl-Hagen (2008). The following documentation 

combines those sources with experimentation, coding and manual examination of sample 

binary hives. The following description of cell structures is strictly limited to records that 

are necessary for the purposes of the project (parsing of the registry tree, computing of 

unallocated space and recovery of keys, their timestamps and their values).  

Two important points to note in the following cell descriptions: 

- All offsets are relative to the first bin of a hive file, which follows immediately after the 

base block; to calculate file offsets 0x1000 bytes must be added to all extracted offsets 
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- Cell sizes, interpreted as signed long integers, are negative numbers. The size of a cell 

is therefore an absolute (or a negated) value of the extracted size.  

The base block contains general information about a hive file and has a signature of 

"regf". From the base block, it is possible to extract the name of the file including its local 

path (except for SYSTEM files, where the local path is not included), the timestamp and 

the offset to the registry root key.  

The file name is often shortened by the Windows operating system (first characters are 

cut off), because the maximum length of the stored name is limited to 32 characters.  

Table 1 Base block  

Offset: Size (bytes): Contents: 

0x0000 0x4 "regf" signature 
0x000c 0x8 timestamp (Windows Filetime format) 
0x0024 0x4 root key offset  
0x0030 0x40 file name (Unicode) 

 

The size of a bin header is always 0x20 bytes, and the bin header includes information 

about the size of a bin. The size of a bin can also be interpreted as an offset to the 

following bin. In other words, bins are chained together, in that each bin points to the bin 

that follows. 

Table 2 Bin header  

Offset: Size (bytes): Contents: 

0x0000 0x4 "hbin" signature 

0x0008 0x4 bin size 

 

Key cells carry the signature "nk" and contain information about the size of the cell, name 

and timestamp of the key, and offsets to parent key, subkey list, value list, security 

descriptor and class name. Offsets are set to 0xffffffff if a key does not have a subkey list, 

a value list, a security descriptor or a class name. The key type is not necessary for tree 
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parsing, but key type values 0x2c and 0xac are reserved for root keys. The information 

about the number of subkeys is also included in subkey list cells.  

Table 3 Key 

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 0x2 "nk" signature  
0x0006 0x2 type  
0x0008 0x8 timestamp 
0x0014 0x4 parent key offset 
0x0018 0x4 number of subkeys 
0x0020 0x4 subkey list offset  
0x0028 0x4 number of values  
0x002c 0x4 value list offset  
0x0030 0x4 security descriptor offset  
0x0034 0x4 class name offset  
0x004c 0x2 key name length 
0x004e 0x2 class name length  
0x0050 variable key name 

 

Subkey lists contain information about the number of subkeys that they refer to. There are 

two main types of subkey lists: "lf"/"lh" lists and "ri"/"li" lists. Lists with signatures "lf" or "lh" 

contain offsets to subkeys and either first four characters of subkey name or a checksum 

of subkey name characters, while "ri" and "li" lists contain offsets to subkeys only.    

Table 4 Subkey list "lf"/"lh 

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 0x2 "lf" or "lh" signature  
0x0006 0x2 number of subkeys 
0x0008 0x4 offset to subkey  
0x000c 0x4 four characters of subkey name or checksum  
0x0010 0x4 offset to subkey 
0x0014 0x4 four characters of subkey name or checksum  
… … … 
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Table 5 Subkey list "ri"/"li" 

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 0x2 "ri" or "li" signature  
0x0006 0x2 number of subkeys 
0x0008 0x4 offset to subkey or subkey list 
0x000c 0x4 offset to subkey or subkey list 
… … … 

A subkey list does not necessarily point to subkeys but may also point to other subkey 

lists. There have been differences in interpretation of how subkey lists point to one 

another. Carvey (2007a), for example, has wrongly assumed that "ri" subkey list can only 

either point to "li" subkey lists or subkeys, whereas test have shown that "ri" subkey list 

can contain references to "lh" subkey lists as well. Norhdal-Hagen (2008) has corrected 

this in the latest versions of ntreg.h library. Since the purpose is to extract all active 

keys from the registry hive file, a parser needs to be flexible, and may as well allow any 

combination of pointers between subkey lists and subkeys. 

A number of keys field in a parent key cell does not necessarily equal a number of keys 

field in a subkey list.  If a subkey list points to other subkey lists, the number of subkeys 

field will contain a number of child subkey lists.    

Figure 4 Keys and subkey lists 
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Each registry key can have multiple values and if this is the case, then the key cell 

contains an offset to a list of its values. A value list does not have any signature and 

contains only offsets to key values.  

Table 6 Value list 

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 0x4 offset to value  
0x0008 0x4 offset to value 
… … … 

 

Values are stored in cells with signature "vk", and contain value name, type and either 

value data or an offset to a value data cell. Value name is simple to retrieve as the cell 

contains both the name length and the name. If a value cell does not contain a name, the 

named value field is set to 0x0 in which case the Windows registry editors translate the 

value name to "Default". In all other cases, the named value field is set to 0x1 and the 

value name is stored at offset 0x18.  

Table 7 Value  

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 0x2 "vk" signature  
0x0006 0x2 value name length 
0x0008 0x2 value data length 
0x000b 0x1 data type  
0x000c 0x4 value data or offset to value data  
0x0010 0x4 value type 
0x0014 0x2 named value 
0x0018 value name length value name 

 

Value data is either stored internally in the value cell, if the value length does not exceed 

four bytes, or in a separate data cell, in which case the value cell contains an offset to a 

data cell. The data type field tells whether data is stored internally or externally: if the data 

type equals 0x80, the field at offset 0x0c contains value data, otherwise the field contains 

offset to a data cell where value data is stored.  
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Table 8 Value data 

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 value data length depends on value type   

 

Value types play an important role, because data has to be interpreted depending on its 

type. Windows registry editors display string types as text, numbers as binary data, while 

all other types are displayed as both binary and hex dump. REG_SZ, REG_EXPAND_SZ 

and REG_MULTI_SZ are all null terminated strings. REG_EXPAND_SZ contains a 

reference to an environment variable, for example "DumpFile" = 

%SystemRoot%\MEMORY.DMP, where %SystemRoot% is replaced by an actual path at 

the run time. REG_MULTI_SZ value type contains several values separated by nulls. 

Value types of SAM\Domain keys can also have values in 500 and 1000 ranges, where 

account numbers are sometimes used as value types. 

Table 9 Value type 

Value Type Format 

0 REG_NONE undefined type 
1 REG_SZ fixed length string 
2 REG_EXPAND_SZ variable length string 
3 REG_BINARY binary data 
4 REG_DWORD 32-bit number 
5 REG_DWORD_BIG_ENDIAN 32-bit number (big-endian) 
6 REG_LINK Unicode string 
7 REG_MULTI_SZ multiple strings 
8 REG_RESOURCE_LIST binary data 
9 REG_FULL_RESOURCE_DESCRIPTION binary data 
10 REG_RESOURCE_REQUIREMENTS_LIST binary data 
11 REG_QWORD 64-bit number 
 

Class name is a hidden cell, in that it is not displayed by Windows registry editors. The 

parser will therefore extract this cell, so its contents can be examined. 

Table 10 Class name 

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 class name length class name (Unicode)  
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There are only a few security descriptors in the registry hives, because many keys, for 

efficiency purposes, are sharing the security descriptors whenever possible. Security 

descriptors are also the least documented cells in the registry. They contain security 

settings (permissions and audits) that control access to keys, and can be viewed using 

Windows registry editors. The parser will not include security data, as it seems less 

relevant for computer forensic examination. Just as any other cell, security descriptor cell 

contains information about its size, which will be used to calculate allocated space.   

Table 11 Security descriptor  

Offset: Size (bytes): Contents: 

0x0000 0x4 size 
0x0004 0x2 "sk" signature  
… … … 

3.2 Registry parser 

The main purpose of the registry parser is to parse down the registry tree to access all 

allocated registry cells. The secondary goal is to build an offline registry viewer that 

displays registry data in a readable form, including key names, their timestamps values 

and class names.  

As Figure 5 shows below, registry hive files can be displayed in a hex editor, and data 

stored as text can be easily read. However, manual extraction and translation of time 

stamps (Windows Filetime format represent the number of 100 nanosecond intervals 

since January 1, 1601 (MSDN, 2008a)), or manual parsing to correlate keys and values 

would be highly impractical. 
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Figure 5 Binary data input 

 

 

An off-line registry parser is a useful forensic tool for off-line examination of registry hive 

files. The tool will also be indispensable for evaluating whether the registry is parsed 

correctly, as output can be validated using Windows registry editors and other off-line 

registry viewers. Finally, the registry parser will be used for examination of valid data 

ranges of the different data fields. 

Figure 6 shows the format of the output, which contains: 

• key name, including its full path name 

• key timestamp (in square brackets) 

• class name (if any) 

• list of key values: �value type; value; name; value data 
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Figure 6 Off-line registry parser 

 
 
 

Registry parser is designed to recursively traverse the tree and to extract all relevant 

information from registry cells. The traversal is performed in a preorder manner to 

preserve the alphabetical order of keys. In a simplified version, the parser can be 

modularized as follows: 

Registry_Parser 

{  

 Parse_Base_Block 

 Parse_Registry_Tree (root_key_offset) 

} 

 

Parse_Base_Block 

{ 

 extract file name and timestamp 

 return root_key_offset 

} 

 

Parse_Registry_Tree (offset)  

{ 

 if key_cell Parse_Key_Cell (offset) 

 else if subkey_list_cell Parse_Sub_Key_List_Cell (offset) 

} 

 

Parse_Key_Cell (offset) 

{ 

 extract key name and timestamp 

 Parse_Class_Name (class_name_offset) 
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 Parse_Value_List_Cell (value_list_offset) 

      Parse_Registry_Tree (subkey_list_offset) 

 } 

Parse_Sub_Key_List_Cell (offset) 

{ 

    for each subkey { Parse_Registry_Tree (subkey_offset) } 

} 

 

Parse_Value_List_Cell (offset) 

{ 

        for each value { Parse_Key_Value_Cell (value_offset) } 

} 

 

Parse_Key_Value_Cell (offset) 

{ 

      extract value name and type  

 if value_data_type == 0x80 extract value data 

 else Parse_Value_Data_Cell (value_offset)  

}  

 

Parse_Value_Data_Cell (offset) 

{ 

         extract and translate value data  

}  

 

Extra functionality includes passing of the full key path during the traversal. Since the 

intention is to output full path names, the full path of the key is passed between modules 

that parse keys and subkey lists.  

The purpose of the off-line registry parser is to display relevant data in a human readable 

form. The binary data extracted from the registry can have many formats and therefore 

need translation. Data stored in ASCII format can be output direct, while data stored in 

Unicode format needs translation. In a few special cases, value names are encrypted with 

the ROT-13 algorithm and need to be decrypted as well. Value data stored as null 

terminated strings can be displayed as text once the terminating nulls are removed. 

Values of type REG_MULTI_SZ contain multiple strings separated by null characters, 

which need to be separated, before being displayed separated by semicolons. All 32-bit 

and 64-bit numbers can be displayed as either numbers or binary data, or both. All other 

data types (binary and REG_NONE) will be displayed as both binary data and hex dump. 

The main reason for that is that binary type values can contain text - either ASCII or 

Unicode, and should therefore be displayed in a more readable hex format.  
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Many different applications write data to the registry, and data is sometimes stored in 

incorrect formats. Sometimes values of type REG_SZ contain arbitrary binary data, 

including control characters, such as new lines, tabs, etc. To assure proper formatting of 

the output, all control characters in the range of 0x00-0x19 will be removed from all text 

output.    

3.3 Allocated space 

Assuming that registry parser reaches all existing registry cells, unallocated space can be 

computed by subtracting the allocated space from the hive file. Allocated_space [] is a 

hash where offsets and sizes of all allocated cells are saved.  The size of a base block is 

0x1000 bytes and size of each bin header is 0x20 bytes. All cells have their size stored in 

the first four bytes and the sizes are negative, therefore the actual cell size is an absolute 

value (or negated value) of the signed long number. 

 

Registry_Parser 

{  

 Parse_Base_Block 

 Parse_Bin_Headers 

 Parse_Registry_Tree (root_key_offset) 

} 

 

Parse_Base_Block 

{ 

 Allocated_space [offset] = 0x1000 

 return root_key_offset 

} 

 

Parse_Bin_Headers 

{ 

 my blocks = file_size / 0x1000 

 for each block 

 {  

  if bin header { Allocated_space [block_offset] = 0x20 

} 

 }  

} 

 

Parse_Registry_Tree (offset)  

{ 

 if key_cell { Parse_Key_Cell (offset) } 

 else if subkey_list { Parse_Sub_Key_List_Cell (offset) } 

} 
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Parse_Key_Cell (offset) 

{ 

 Allocated_space [offset] = key_cell_size 

 Allocated_space [class_name_offset] = class_name_cell_size 

 Allocated_space [security_descriptor_offset]  

 = security_descriptor_cell_size 

 Parse_Value_List_Cell (value_list_offset) 

      Parse_Registry_Tree (subkey_list_offset) 

 } 

 

Parse_Sub_Key_List_Cell (offset) 

{ 

  Allocated_space [offset] = subkey_list cell_size 

   for each subkey { Parse_Registry_Tree (subkey offset) } 

} 

 

Parse_Value_List_Cell (offset) 

{ 

 Allocated_space [offset] = value_list_cell_size 

 for each value { Parse_Key_Value_Cell (value_offset) } 

} 

 

Parse_Key_Value_Cell (offset) 

{ 

 Allocated_space [offset] = value_cell_size 

 if value_data_type <> 0x80  

  { Allocated_space [value_data_cell_offset] 

  = value_data_cell_size) } 

} 

3.4 Unallocated space 

The algorithm that calculates the unallocated space needs to first calculate the allocated 

space as shown above and then subtract the allocated space from the file.  

A hash Unallocated_space [] stores offsets and sizes of all unallocated cells, where 

Unallocated_space [cell_offset] = cell_size.  

previous_offset = 0x0 

for each offset in sorted Allocated_space [] 

{  

 current_offset = offset + Allocated_space [offset] 

 if previous_offset < offset  

  { Unallocated_space [previous_offset]  

  = offset - previous_offset } 

 previous_offset = current_offset 

} 
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To include the space between the last allocated cell and the end of a file, an extra value 

needs to be added to the Allocated_space hash, before unallocated space is computed:  

Allocated_space [file_size] = 0x0 

3.5 Simpler way to compute unallocated space 

Examination of unallocated space, computed as described above, has shown that the first 

four bytes of each unallocated cell interpreted as a signed long number, equal to what 

has been computed as the cell's size. This number is positive as opposed to cell sizes of 

allocated cells, which are always negative. In fact, a PowerPoint presentation by Probert 

(n.d.) includes the following information about a cell size:   

 "positive = free cell, negative = allocated cell (actual size is –Size)". 

The statement seems to implicate that, upon deletion, cell sizes are negated and 

therefore previously deleted records could be found by searching for valid signatures 

preceded by positive cell sizes, but tests have shown that it was not the case. 

Russinovich (1999) explains that neighboring deleted cells are joined together and as a 

result, unallocated cells can contain multiple keys and values, as opposed to allocated 

cells that only contain a single key, value, list, etc. In conclusion, while it is not possible to 

search for deleted records direct, it is possible to calculate unallocated space solely 

based on cell sizes, and without parsing down the tree. The following simple algorithm 

computes unallocated space without parsing the registry tree: 
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do {  
 if base_block { cell_size = -0x1000 } 

else if bin_header { cell_size = -0x20 } 

else { cell_size = signed long } 

if  cell_size > 0x0  

 { Unallocated_space [offset] = cell_size } 

last_cell_offset = offset 

offset = offset + abs (cell_size) 

} until cell_size = 0x0 or offset > file_size 

 

if last_cell_offset < file size 

{ Unallocated_space [last_cell_offset] =  

file_size - last_cell_offset }  

All cells can be classified as allocated or unallocated solely based on their size (positive 

or negative). A base block and bin headers do not carry information about their sizes, but 

their sizes are constant. The algorithm sets base block and bin header sizes to be 

negative numbers in order to exclude them from the unallocated space.   

Tests have shown that hive files often have some additional space after the last bin and 

that this space often contains zeros, but in some case the extra space contains random 

data, therefore  the algorithm includes that space as unallocated.  

3.6 Recovery of deleted data  

Once the unallocated registry space is computed, registry keys and values can be found 

by searching for their signatures. In recovery of deleted data, the project will focus on 

recovery of keys and their values. The project sponsor has expressed that restoring 

values without any connection to a key, could be compared to finding a text string in a 

slack space. That being said, it could still be relevant to look for text strings in the registry 

"slack", which can be achieved by displaying all unallocated space as a hex dump for 

visual examination. The focus of the project will be to recover keys and their values, while 

everything else will be included in a hex dump.  
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3.6.1 Recovery of keys and their values 

There are limits to what can be extracted from unallocated cells. Registry keys link back 

to their parent keys. Whenever a key is restored, it is possible reconstruct the full key 

path, assuming that ancestor keys are either not deleted, or deleted but recoverable. 

Subkey links are removed on deletion, but if paths can be restored, they will show 

eventual parent child relations between restored keys. Furthermore, links between keys 

and their security descriptor are removed as well. Interestingly class name links are not 

overwritten, and class name can therefore be extracted if it exists, but only few keys have 

class names.  

Figure 7 Deleted key 

 

Deleted keys still carry valuable information about their timestamps and values. If a key 

can be recovered, there is a good possibility that at least some of its values can be 

recovered as well, if their value lists are intact. 

Examination of the unallocated space has shown that in the beginning of a hive file 

unallocated cells tend to be small, while larger unallocated cells are most often found 

towards the end of a hive file. This can be explained by the functionality of Configuration 
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Manager, as described by Russinovich (1999), where new cells are stored in a first found 

unallocated cell of a sufficient size. Since key cells are always larger than 0x50 bytes (key 

name starts at offset 0x50), while searching for deleted keys the algorithm can be 

optimized by skipping all unallocated cells that are too small to hold a key cell. For the 

same reason, the algorithm can stop if the remaining space of unallocated cell to be still 

examined becomes too small. Finally, since the size of a cell is always a multiple of 0x8 

bytes, the algorithm can skip 0x8 bytes of input at a time while looking for a cell signature. 

Once a signature "nk" is found, the algorithm proceeds in a similar manner to the registry 

parser, with the exception that key path is computed by following parent links. The final 

part of the algorithm displays all unallocated space in both binary and hex formats. 

for each offset in Unallocated_space[] 

{ 

 if Unallocated_space [offset] > 0x50 

      {  

  max_ offset =  

  offset + Unallocated_space [offset] - 0x50 

  while (offset < max_ offset) 

  {  

   if key_cell_signature { Parse_Key }  

             offset = offset + 0x8 

  } 

 } 

} 

 

for each offset in Unallocated_space[] 

{ 

 display cell in binary and hex format 

} 

 

Parse_Key 

{ 

 extract key name 

 extract time stamp 

 key_path = key_name 

 while key_cell at parent_key_offset  

      { 

       key_path = parent_key_name . "\" .  key_path; 

            offset = parent_key_offset 

      } 

 Parse_Value_List (value_list_offset) 

} 

 

Parse_Value_List (offset) 

{ 

for each value { Parse_Key_Value (value offset) } 

} 

 

Parse_Key_Value (offset) 

{ 

      extract value name and type  
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 if value_data_type == 0x80 { extract value data } 

 else { Parse_Value_Data (value offset) }  

}  

 

Parse_Value_Data (offset) 

{ 

         extract and translate value data  

}  

Functionality not shown above includes determination whether a full key path was 

successfully computed; if the algorithm reached the root of the tree following parent links 

then the key type of the key is either 0x2c or 0xac. If that is not the case, question marks 

will precede the key path in order to show that the full key path could not be recovered. 

Just like in the parser algorithm, data needs to be formatted and translated depending on 

its type, for example timestamps, Unicode, ROT-13, etc. 

3.6.2 Data validation 

Deleted keys and values no longer reside in separate cells, because Windows kernel 

adjoins neighboring deleted cells, and the information about the size of the previously 

deleted keys and value cells is no longer available. This complicates matters because it is 

not possible to determine where data belonging to a deleted unit stops and whether or not 

it has been overwritten. Very careful validation of input is therefore necessary in order to 

avoid incorrect outputs.  

In order to reject corrupted data, retrieved key cells can be validated by checking if each 

field of data has a vaid value. As already mentioned, offsets to a security descriptor and a 

sub key list are set to 0xffffffff, while number of sub keys is set to 0x0 when a key is 

deleted. If a key contains class name, it has to contain a valid offset to a class name cell, 

and if there is no class name (class name length equals 0x0), a class name offset should 

be set to 0xffffffff. Similar relation occurs between a number of values and a value list 

offset. 
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It can be difficult to decide valid ranges of data. Very relaxed validation might result in 

many false positives, while too strict validation might result in false negatives, where valid 

data is rejected. A valid timestamp can be defined as being in the range of 0x0 - hive file 

timestamp, because a file timestamp represents the last time the file was written to, 

therefore a key timestamp can never be larger than the file timestamp. The timestamp 

range could be further improved by selecting the earliest possible timestamp - for 

example the time when the Windows operating system was installed. Valid offsets can be 

defined to be in range of 0x1000 - file size, to exclude the base block, but since all offsets 

are relative to the first bin, as described previously, the actual valid range is 0x0 … file 

size - 0x1000. Furthermore, Microsoft defines maximum key name length to be 255 (0xff) 

characters, while maximum value name length is 16,383 (0x3ff). (MSDN, 2008b)   

Table 12 Deleted key with values 

Offset: Size (bytes): Contents: Valid data: 

0x0004 0x2 signature nk 
0x0008 0x8 timestamp 0x0 … file timestamp 
0x0014 0x4 parent offset 0… file_size - 0x1000 
0x0018 0x4 number of sub keys 0x0 
0x0020 0x4 sub key list offset 0xffffffff 
0x0028 0x4 number of values 0x1 … 0xffffffff 
0x002a 0x4 value list offset 0… file_size - 0x1000 
0x0030 0x4 security descriptor offset 0xffffffff 
0x0034 0x4 class name offset valid offset (0xffffffff if none) 
0x004c 0x2 key name length 0x1 … 0xff 
0x004e 0x2 class name length 0x0 if no class name 

 

Some additional fields, which were not used for parsing of the registry tree, can be used 

for validation of input. As shown in Table 13, keys without any values (a number of values 

field is set to 0x0), have their maximum value name length and maximum value data size 

fields set to 0x0.  

Table 13 Deleted key without values 

Offset: Size (bytes): Contents: Valid data: 

0x0004 0x2 signature nk 
0x0008 0x4 timestamp 0x0 … file timestamp 
0x0014 0x4 parent offset 0 … file_size - 0x1000 
0x0018 0x4 number of sub keys 0x0 
0x0020 0x4 sub key list offset 0xffffffff 
0x0028 0x4 number of values 0x0 
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0x002c 0x4 value list offset 0xffffffff 
0x0030 0x4 security descriptor offset 0xffffffff 
0x0034 0x4 class name offset 0xffffffff 
0x0040 0x4 max value name length 0x0 
0x0044 0x4 max value data size valid offset (0xffffffff if none) 
0x004c 0x2 key name length 0x1 … 0xff 
0x004e 0x2 class name length 0x0 if no class name 

 

Similarly, recovered value cells can be validated in order to reject corrupted data. Data 

type can have a value of 0x0 or 0x80, in the former case value data is stored separately 

and the value data field should contain a valid offset. If data is stored in a value cell, the 

maximum length of value data is 0x4 bytes. In both cases, value types can be in the 

range 0x0 … 0xb, with the exception of values in SAM\Domains keys, where value types 

can be in 500 and 1000 ranges, because account numbers are sometimes used as value 

types. Named value field is set to 0x0 if value has no name (which Windows translates to 

"Default"), in which case value name length should equal 0x0. If a value has a name, 

named value field should be set to 0x0. 

Table 14 Deleted value linking to value data 

Offset: Size (bytes): Contents: Valid data: 

0x0004 0x2 signature vk  
0x0006 0x2 value name length 0x0 … 0x3ff 
0x000b 0x1 data type  0x0 
0x000c 0x4 value data offset 0… file_size - 0x1000 
0x0014 0x2 named value 0 … 1 
 

Table 15 Deleted value containing value data 

Offset: Size (bytes): Contents: Valid data: 

0x0004 0x2 signature vk 
0x0006 0x2 value name length 0x0 … 0x3ff 
0x0008 0x2 value data length 0x0 … 0x4 
0x000b 0x1 data type  0x80  
0x000c 0x4 value data 0 … 0xffffffff 
0x0014 0x2 named value 0 … 1 
 

In cases where value data is stored outside the value cell, there is no trivial way to decide 

if the value data has been overwritten, as the cell does not contain any extra fields that 

can be validated.   
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The algorithm described in chapter 3.6.1 Recovery of keys and their values can thus be 

improved by adding the following validation statements: 

Parse_Key 

{ 

 return if timestamp > file_timestamp 

 return in not Valid_offset (parent_offset)   

 return if number_of_sub_keys <> 0x0 

 return if subkey_list_offset <> 0xffffffff 

 return if security_descriptor_offset <> 0xffffffff 

 return if class_name_offset == 0xffffffff  

  and class_name_length <> 0x0 

 return if class_name_offset <> 0xffffffff  

  and class_name_length == 0x0 

 return if key_name_length == 0x0 or key_name_length > 0xff 

 return if class_name_length <> 0x0 

 if number_of_values == 0x0 

 { 

  return if value_list_offset <> 0xffffffff 

  return if max_value_name_length <> 0x0 

  return if max_value_data_size <> 0x0 

 } 

 else  

 {  

  return if not Valid_offset (value_list_offset)  

  return if max_value_name_length > 0x3ff 

 } 

 Parse_Value_List (value_list_offset) 

} 

 

Parse_Value_List (offset) 

{ 

for each value  

{  

 if Valid_offset (value_offset)   

  { Parse_Key_Value (value offset) }  

} 

} 

 

Parse_Key_Value (offset) 

{ 

 return if signature <> "vk" 

      return if value_name_length > 0x3ff 

 return if data_type <> 0x0 and data_type <> 0x80 

 if data_type == 0x80 

 { 

  return if value_data_length > 0x4 

 } 

 else if data_type == 0x0  

 { 

  return if not Valid_offset (value_data) 

 } 

 return if named_data == 0x0 and value_name_length > 0 

 return if named_data == 0x1 and value_name_length == 0 

} 

 

Valid_offset (offset) 

{ 
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 return offset < file_size - 0x1000 

} 

3.6.3 Improved algorithm 

The tests run by the project sponsor have shown that the algorithm retrieved keys that are 

also present in the "live" registry. Restored keys had the same names and values, and 

sometimes-even timestamps, as "live" keys but were stored at different offsets in registry 

hive file. The study of how Windows registry functions perform key updates and deletions 

is out of the scope of the project. However, it is not optimal to list recovered keys without 

any indication of whether or not they still exist in the "live" registry. The algorithm will be 

therefore improved to differentiate between deleted and updated keys, in order to provide 

more complete information. The algorithm has to perform the following functions: compute 

unallocated space, recover keys and their values from the unallocated space, and finally 

to examine if recovered keys reside in the allocated space.  

In order to provide as much documentation as possible for recovered data, the algorithm 

will display offsets to recovered key and values. Since one cannot guarantee that all, if 

any, values can be retrieved, the algorithm will display the number of values field, to 

document how many values a key had upon deletion. Finally, each recovered key will be 

looked up to determine if the key has been deleted or updated (still resides in live 

registry). If the key still resides in the registry, the live key and its values will be parsed as 

well to show what, if anything, has changed. 

The desired output of the algorithm is as follows: 

### Deleted key ### 

• key offset 

• key name, including its full path name 

• key timestamp (in square brackets) 

• number of values 
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• list of key values: �offset; value type; value; name; value data 

… 

### Updated key ### 

• key offset 

• key name, including its full path name 

• key timestamp (in square brackets) 

• number of values 

• list of key values: �value type; value; name; value data 

Corresponding live key 

• key offset 

• key timestamp (in square brackets) 

• number of values 

• list of key values: �offset; value type; value; name; value data 

… 

### Unallocated space ### 

• offset range 

• binary data 

• hex dump 

… 

There are two different methods for calculation of unallocated space: by either parsing of 

the registry tree or based on cell sizes. There are also two different ways of deciding 

whether a restored key has a duplicate in the "live" registry. A key can be looked up in a 

registry when it is recovered, or a hash of key names and their offsets can be created 

beforehand and used for a quick look up of restored keys.  

In a recent paper, Morgan (2008) has described how data hiding in a registry can easily 

be accomplished by storing data in an unallocated cell and changing the size of the cell to 

a negative number, thus marking it as used. The manipulated cell would not be 
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referenced by the registry tree and would not be discovered if unallocated space were 

computed based on cell sizes (looking for cells with a positive number in the size field). 

Based on that valid observation, the final algorithm will therefore compute allocated space 

by parsing the registry tree, and consequently any data hidden by manipulation of a cell 

size will be recovered.  

Since the algorithm already computes allocated space by parsing the registry tree, a hash 

Live_key [] can be created, and store both key paths and offset, for efficient look up of 

recovered keys later: 

Parse_Key_Cell (offset) 

{ 

 … 

 Live_key [key_path] = offset 

 … 

} 

 

The final version of the algorithm combines previously described algorithms to generate 

output as described above, and can be summarized as follows:   

Parse registry tree 

 Compute allocated space 

 For each key { Live_key [key_path] = offset } 

Unallocated space = file space - allocated space 

For each unallocated cell 

 Search for "nk" signature 

 Validate all fields 

 Print key data 

 For each value  

  Validate all fields 

  Print value data 

 If Live_key[key] 

  Print live key data 

  For each live key value 

   Print value data 

Display unallocated space as binary and hex dump 
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Chapter 4.  METHODS AND REALIZATION 

4.1 Methodology 

There exist many different methodologies for approaching analysis and design in software 

projects in the IT industry. Most of these based on an assumption that the structure of 

input data and functional requirements can be discovered during an analysis phase and 

the software design can then be derived from the analysis. The nature of this project is 

more exploratory than most software projects, and it takes an experimental approach with 

continual refinement of successive prototypes.  

As mentioned earlier, the existing documentation of the Windows registry is incomplete. 

This meant that the analysis had to be based not only on existing documentation but also 

has to include knowledge gathered by thorough examination of Windows hive files. 

Taking a start point in the existing information about the Windows registry hives a first 

prototype of the registry parser was constructed. This prototype was used to analyze test 

hive files from Windows XP and Windows Vista machines. The results were used to refine 

the analysis and design and to improve the prototype. The final analysis and design 

therefore represent the combined knowledge obtained in these iterations. 

4.2 Tools 

Microsoft's registry API functions (MSDN, 2008c) allow applications to retrieve and modify 

or delete data. Those API functions have severe limitations in that their detailed 

functionality and their implementation are not fully documented and they therefore 

operate as black box functions. Furthermore, no functions are available to peek into the 
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slack space of the registry. Finally, using Windows based API functions would limit the 

tools to execution on a single platform. 

Perl has been chosen as a programming language, because it is very flexible and 

platform independent, and to accommodate the sponsor of the project, who implements 

all his forensic tools in Perl. The functions that access input hive files have been placed in 

a separate library, in order to keep scripts simple and to facilitate reuse of code.   

Hex Workshop (Break Point Software, 2008) hex editor has been used to manually 

examine binary files. Hive files have been collected from several machines by booting 

them from a Linux disc, as hive files are locked while the Windows operating system is 

running. On one occasion, ERUNT (Hederer, 2005) tool was used to obtain files without 

shutting down the system. Perl scripts were interpreted using ActivePerl 5.10.0 

(ActiveState, 2008) distribution, and screen shots of tests show outputs displayed in a 

Perl Express (2005) editor.  

4.3 Realization 

The design has been changed numerous times. Once the algorithm that parses down the 

registry tree was implemented, the original assumptions about the structure of registry 

cells have been confirmed, rejected or modified by outputting one field at a time for each 

registry cell. The discovery that unallocated cells have positive sizes resulted in the 

redesign of the methodology to compute unallocated space in a more efficient manner. 

There have been no assumptions about recovered data until that data was actually found 

and examined, because at the beginning of the project it was unknown whether anything 

useful will be found in the unallocated space at all. The surprising fact that recovered keys 

can have duplicates in the "live" registry led to yet another change in the design, as it was 

now necessary to verify whether keys were deleted or only updated. Once data was 

recovered, it became clear that data was frequently overwritten. To avoid recovery of 
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corrupted data, key and value cells had to be reexamined in order to find valid ranges for 

as many fields as possible, thus including fields that have not previously been of much 

interest. Valid ranges of data were defined by running tests on "live" data in order to 

identify upper and lower bounds. Additionally outputs from both "live" and recovered keys 

have been compared, in order to determine how key cells are modified upon deletion. The 

final change in the design occurred when it became clear that computing of unallocated 

space based on cell sizes has a weakness, in that an adversary can easily manipulate 

cell sizes in order to hide data.   

4.4 Tests 

Test data consists of 47 hive files, collected from Windows Vista and Windows XP 

machines, supplied by or copied with permissions from their owners. Hive files of types 

COMPONENTS, SYSTEM and SOFTWARE were the most difficult to obtain due to their huge 

sizes.  

  

Figure 8 Test hive files 
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Tests were performed throughout the whole life cycle of the project, but tests were 

typically run on smaller hive files for efficiency reasons. The final tests were run on the 

complete set of test files. The testing has been very successful, as it not only helped to 

find small errors in the program code, but also led to new discoveries about Windows 

registry hive files. The main limitation of the testing phase is the small set of hive files, 

which were difficult to obtain. 

The final tests cover the assumptions made about the registry hive files, parsing of the 

registry tree, computation of unallocated space, and finally recovery of keys and their 

values from unallocated space, including validation and interpretation of the recovered 

data.  

4.4.1 Hive file structure 

To test the general assumptions about registry hive file's building blocks, such as base 

block, bins and cells, a script hivestructure.pl (source code is listed in appendix 

A.4) was developed. The script checks the size of each hive file and parses all files 

sequentially in order to determine sizes of base blocks, bins, bin headers and cells. Test 

numbers are included in the script to indicate which code segment performs the given 

test. 

Table 16 Hive file structure 

Element Assumption Test number 

file size  multiple of 0x1000 bytes 1 
base block 0x1000 bytes 2 
bin multiple of 0x1000 bytes 3 (failed) 
bin header 0x20 bytes 4 
cell multiple of 0x8 bytes 5 
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As Figure 9 shows, the assumption about a bin size being always a multiple of 0x1000 

bytes was incorrect, as in a single file a bin header existed at an offset divisible by 0x400 

bytes. Once this number was corrected, all test files passed the test successfully.   

Figure 9 Bin header at an offset not divisible by 0x1000 

 

4.4.2 Data fields 

A script datafields.pl (source code is listed in appendix A.5) was implemented in 

early stages of the project, to determine valid ranges of data fields, and most false 

assumptions have been corrected at the early stages of the project. The final test was run 

on the complete set of test files, and a single new error has been discovered; in few 

cases, bins did not correctly link to each other, and broken chains were identified. This 

caused a correction of the algorithm to compute allocated space described in chapter 3.3 

Allocated space. Instead of searching for bins following bin header offsets to following 

bins, the algorithm now searches for bin headers looking for their signatures at relevant 

offsets.  All other tests have completed successfully. 
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Table 17 Base block validation 

Field Assumption Test number 

signature  "regf" 1 
timestamp >= all key timestamps 6 
root key offset points to a root key  2 

 

Table 18 Bin header validation 

Field Assumption Test number 

signature "hbin" 3 
next bin offset points to next bin failed 

 

Table 19 Key validation  

Field Assumption Test number 

cell size negative 4 
signature "nk" 5 
timestamp <= file timestamp 6 
key type  0x2c and 0xac reserved for root keys  7 
parent offset points to a key cell (except for root key) 8 
subkey list offset 0xffffff if number of subkeys == 0x0 9 
subkey list offset points to subkey list if number of subkeys > 0x0 10 
value list offset 0xffffff if number of values = 0x0 11 
value list offset valid offset if number of values > 0x0 12 
security descriptor offset 0xffffffff or points to security descriptor cell 14 
class name offset 0xffffffff or valid offset 15 
key name length > 0x0 17 

 

Table 20 Security descriptor validation 

Field Assumption Test number 

cell size negative 13 
signature "sk" 14 

 

 

Table 21 Class name 

Field Assumption Test number 

cell size negative  16 
 

Table 22 Subkey list validation 

Field Assumption Test number 

cell size negative 18 
signature "lf", "lh", "ri" or "li" 19 
number of subkeys > 0x0 20 
offsets point to subkey or subkey list 21 
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Table 23 Value list validation 

Field Assumption Test number 

cell size negative 22 
offsets point to values 23 

 

Table 24 Value validation 

Field Assumption Test number 

cell size negative 24 
signature "vk" 25 
value name length <= 0x3ff 26 
data type 0x0 or 0x80 27 
value data length <= 0x4 if data type 0x80, > 0x4 otherwise 28 
named value 0x0 if name length == 0x0, 0x1 otherwise 29 
value data valid offset if data type == 0x0 30 

 

Table 25 Linked data validation 

Field Assumption Test number 

cell size negative  31 
 

4.4.3 Registry parser 

The source code of the registry parser script called regparser.pl is listed in appendix 

A.1, and sample outputs from the script (one screen shot per each input hive file) are 

included in appendix B.1.  

The functional test of the registry parser was performed by constructing a set of cases 

that cover different input types. The script regparser.pl was slightly modified in order 

to enumerate all keys and values for reference purposes. The script also outputs key and 

sub key lists encountered in each tree path of a key, to identify cases where a given sub 

key list type was used. Keys and values that satisfy the specified test cases were 

retrieved from the output (see appendix B.2) and examined; if a key covers a test case all 

of its values are also shown, and if a value covers a test case, its key and all other values 

belonging to that key are shown as well. As Table 26 illustrates, the input test set covers 

the specified test cases, with the exception of a single value type, which was not present 

in any of the test input files.  



 

  39

Table 26 Functional test of regparser.pl 

Cell Field Test file Key/Value 

key number of sub keys == 0 ntuser.dat key 4 
key number of sub keys > 0 ntuser.dat key 3 
key class name offset == 0xffffffff ntuser.dat key 3 
key class name offset != 0xffffffff ntuser.dat key 312 
values number of values == 0 ntuser.dat key 3 
values number of values > 0 ntuser.dat key 4 
sub key list signature "lf" ntuser.dat key 3 
sub key list signature "lh" system key 4181 
sub key list signature "ri" components key 510 
sub key list signature "li" components key 510 
value   name length == 0 ntuser.dat value 1 
value  name length > 0 ntuser.dat value 2 
value  name encrypted with ROT-13 ntuser1.dat value 3880 
value   type REG_NONE software value 128458 
value  type REG_SZ ntuser.dat value 1 
value  type REG_EXPAND_SZ software value 128462 
value   type REG_BINARY components value 1746 
value  type REG_DWORD software value 5 
value  type REG_DWORD_BIG_ENDIAN sam1 value 31 
value   type REG_LINK sam1 value 5 
value  type REG_MULTI_SZ software value 128698 
value  type REG_RESOURCE_LIST system value 11436 
value   type REG_FULL_RESOURCE_DESCRIPTION - N/A 
value  type 

REG_RESOURCE_REQUIREMENTS_LIST 
system value 11435 

value  type REG_QWORD software value 105162 
value   type other sam  value 12 
value  data length == 0 sam  value 12 
value  data length <= 4 software value 5 
value data length > 4 ntuser.dat value 1 

 

Additionally all the keys and their values used for the purpose of the above test were also 

retrieved from the output generated by the regp.pl offline registry viewer tool by Carvey 

(2007a), its unaltered source code is listed in appendix A.6. Key names, timestamps, 

value names, value types and value data output by both scripts (see appendix B.2) were 

compared and a few differences were found and are explained below. The test has 

confirmed that the script regparser.pl extracts and translates key and values 

correctly.  
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Table 27 Comparison of outputs from regparser.pl and regp.pl 

Test file Key/Value Element Comparison 

components key 510 name � 
components key 510 timestamp � 
components key 510 number of values � 
components value 1746 value type � 
components value 1746 value name � 
components value 1746 value data � 
components value 1747 value type � 
components value 1747 value name � 
components value 1747 value data � 
components value 1748 value type � 
components value 1748 value name � 
components value 1748 value data � 
ntuser.dat key 3 name � 
ntuser.dat key 3 timestamp � 
ntuser.dat key 3 number of values � 
ntuser.dat key 4 name � 
ntuser.dat key 4 timestamp � 
ntuser.dat key 4 number of values � 
ntuser.dat value 1 value type � 
ntuser.dat value 1 value name � 
ntuser.dat value 1 value data � 
ntuser.dat value 2 value type � 
ntuser.dat value 2 value name � 
ntuser.dat value 2 value data � 
ntuser.dat key 5 name � 
ntuser.dat key 5 timestamp � 
ntuser.dat key 5 number of values � 
ntuser.dat value 3 value type � 
ntuser.dat value 3 value name � 
ntuser.dat value 3 value data � 
ntuser.dat key 312 name � 
ntuser.dat key 312 timestamp � 
ntuser.dat key 312 number of values � 
ntuser1.dat key 900 name � 
ntuser1.dat key 900 timestamp � 
ntuser1.dat key 900 number of values � 
ntuser1.dat value 3880 value type � 
ntuser1.dat value 3880 value name � 
ntuser1.dat value 3880 value data � 
ntuser1.dat value 3881 value type � 
ntuser1.dat value 3881 value name � 
ntuser1.dat value 3881 value data � 
ntuser1.dat value 3882 value type � 
ntuser1.dat value 3882 value name � 
ntuser1.dat value 3882 value data � 
ntuser1.dat value 3883 value type � 
ntuser1.dat value 3883 value name � 
ntuser1.dat value 3883 value data � 
ntuser1.dat value 3884 value type � 
ntuser1.dat value 3884 value name � 
ntuser1.dat value 3884 value data � 
sam key 12 name � 
sam key 12 timestamp � 
sam key 12 number of values � 
sam value 12 value type see [1] 
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sam value 12 value name � 
sam value 12 value data see [2] 
sam1 key 5 name � 
sam1 key 5 timestamp � 
sam1 key 5 number of values � 
sam1 value 5 value type � 
sam1 value 5 value name � 
sam1 value 5 value data see [2] 
sam1 key 31 name � 
sam1 key 31 timestamp � 
sam1 key 31 number of values � 
sam1 value 31 value type � 
sam1 value 31 value name � 
sam1 value 31 value data see [2] 
software key 7 name � 
software key 7 timestamp � 
software key 7 number of values � 
software value 5 value type � 
software value 5 value name � 
software value 5 value data � 
software key 86093 name � 
software key 86093 timestamp � 
software key 86093 number of values � 
software value 105162 value type see [3] 
software value 105162 value name � 
software value 105162 value data see [3] 
software key 93378 name � 
software key 93378 timestamp � 
software key 93378 number of values � 
software value 128458 value type � 
software value 128458 value name � 
software value 128458 value data see [4] 
software key 93380 name � 
software key 93380 timestamp � 
software key 93380 number of values � 
software value 128460 value type � 
software value 128460 value name � 
software value 128460 value data � 
software value 128461 value type � 
software value 128461 value name � 
software value 128461 value data � 
software value 128462 value type � 
software value 128462 value name � 
software value 128462 value data � 
software value 128463 value type � 
software value 128463 value name � 
software value 128463 value data � 
software key 93435 name � 
software key 93435 timestamp � 
software key 93435 number of values � 
software value 128697 value type � 
software value 128697 value name � 
software value 128697 value data � 
software value 128698 value type � 
software value 128698 value name � 
software value 128698 value data see [5] 
system key 4181 name � 
system key 4181 timestamp � 
system key 4181 number of values � 
system value 11435 value type � 
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system value 11435 value name � 
system value 11435 value data � 
system value 11436 value type � 
system value 11436 value name � 
system value 11436 value data � 

 

[1] regp.pl did not display any value type as it only allows value types in ranges 

0x9…0xa. The actual value type is 1007, as sometimes account numbers are used as 

value types in SAM hive files.  

[2] For some value types regp.pl displays value data as 0, even though the value has 

no data. Tests were rerun to show the length of value data and confirmed that those 

values do not have any data (data length is set to 0x0) and that therefore regparser.pl 

handles the data field correctly. 

[3] regp.pl does not implement the value type REG_QWORD and as result displays 

data as text 

[4] In the case of value type REG_NONE regp.pl translated the value data incorrectly 

[5] There is a difference in how the two scripts format values of the type REG_MULTI_SZ; 

regparser.pl inserts semicolons to separate the retrieved strings. 

Finally, a test was run to compare the numbers of keys and values retrieved by both 

scripts (key and value counters were inserted in both scripts). In most cases, both scripts 

retrieved the same amount of keys and values. The script regp.pl failed to complete 

successfully in two cases, therefore test data could not be produced. The script failed on 

files with root key of type 0xac; the initial loop of the script searches the file for a root key 

node of type 0xc and could not terminate when the input file contained a root key of type 

0xac. 
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Table 28 Number of keys and values recovered by regparser.pl and regp.pl 

Test file regparser.pl 
keys/values 

regp.pl 
keys/values 

Result 

bcd-template 190/151 190/151  
bcd-template2 99/75  99/75  
components 61246/126110 61246/126110  
components1 61660/117349 61660/117349  
components2 65413/135986 65413/135986  
default 725/2672 725/2672  
default1 9200/11430 5204/7446 failed 
default2 335/1504 335/1504  
default3 304/1338 304/1338  
default4 447/2174 447/2174  
ntuser.dat 1397/7093 1397/7093  
ntuser1.dat 1144/5561 1144/5561  
ntuser2.dat 3062/14524 3062/14524  
ntuser3.dat 10319/30861 10319/30861  
ntuser4.dat 17691/65993 17691/65993  
ntuser5.dat 10249/29992 10249/29992  
ntuser6.dat 3720/13212 3720/13212  
ntuser7.dat 473/881 473/881  
ntuser8.dat 1724/10565 1724/10565  
ntuser9.dat 3076/17012 3076/17012  
ntuser10.dat 2488/13536 2488/13536  
ntuser11.dat 2030/12773 2030/12773  
ntuser12.dat 2164/11802 2164/11802  
ntuser13.dat 9844/27648 9844/27648  
sam 54/61 54/61  
sam1 78/84 78/84  
sam2 52/58 52/58  
sam3 82/97 82/97  
sam4 52/59 52/59  
security 225/224 225/224  
security1 326/335 326/335  
security2 75/74 75/74  
security3 90/99 90/99  
security4 81/80 81/80  
software 105061/163690 61464/112036  failed 
software1 190526/291428 116546/203083 failed 
software2 110053/183434 64550/119830 failed 
software3 105619/163742 N/A N/A 
software4 150372/228628 N/A N/A 
system 13421/41543 11483/37667 failed 
system1 16358/49704 14415/45824 failed 
system2 28474/65071 25803/60018 failed 
system3 27020/58000 24342/52930 failed 
system4 32955/71933 30279/66860 failed 
userdiff 425/905 425/905  
userdiff1 425/905 425/905  
usrclass.dat 3963/31103 3963/31103  
 

In several cases, the script regparser.pl retrieved more keys and values, because test 

files have a tree path containing "ri"->"lh" subkey list combination, which regp.pl does 

not support. As a result, "lh" sub key list was not parsed and regp.pl did not retrieve any 
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of the keys residing in this branch of the tree. The test has shown that regparser.pl 

parses the registry tree more successfully than regp.pl script. 

4.4.4 Calculation of unallocated space 

A script called regslack.pl (source code is included in appendix A.2) implements both 

the calculation of the unallocated space and the recovery of deleted keys and values. The 

chosen method for the calculation of the unallocated space parses the registry tree in 

order to calculate the space referenced by the tree and computes the unallocated space 

as all the remaining space of the hive file. If all of the allocated space of the registry was 

accessed by parsing the registry tree, all the remaining cells should have positive sizes. 

The tests performed on the complete set of test files have surprisingly shown that it is not 

always the case.   

Three test files (ntuser13.dat, software4 and system4) were copied from the 

running system using ERUNT tool developed by Hederer (2005). Tests have shown that 

those files have somewhat different structure than files copied from shutdown systems, 

and contained keys and value cells with negative sizes, that were not reached by parsing 

the registry tree. Additionally a hive file included in a tool DVD (Carvey, 2007b) called 

ntuser1.dat exhibits the same behavior which indicates that the file was also retrieved 

from a running system. Since analyzing hive files from a running system is out of the 

scope of this project, those files were excluded from the following tests. Once those files 

were excluded, the script hivestructure.pl was rerun and bin headers were now only 

found at offsets divisible by 0x1000 bytes, showing that the original assumption about bin 

sizes seems to be correct in a post mortem scenario.   

Code was added to regslack.pl to display cells with negative sizes that were not 

reached by parsing the registry tree. As sample outputs show (see appendix B.3), even 

after the exclusion of the files copied from live system, SOFTWARE and SYSTEM hive files 

contain cells with negative sizes in the computed unallocated space. Those files do not 
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seem to contain any offsets that reference those cells. Those mysterious cells do not 

contain any live keys or values, but in a couple of software hive files deleted keys and 

values were found. There is not enough test data to conclude whether this mystery only 

occurs in SOFTWARE and SYSTEM files. The approach to compute unallocated space as 

not referenced by the tree is more effective, as those keys and values would not been 

found if unallocated space was computed based on cell sizes. The algorithm was slightly 

adjusted to clearly indicate the cases were keys are recovered from cells with negative 

sizes.   

Figure 10 Recovered keys from unallocated cells with negative sizes 
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4.4.5 Recovery of deleted keys and their values 

The table below shows the comparison of total numbers of "live", recovered and rejected 

keys and values for each test file. There is not enough test data to look for eventual 

patterns. Since key and values must have been deleted in order to reside in unallocated 

space, it makes sense that DEFAULT files produce small number of recovered keys, as 

they are updated infrequently. The more keys have been deleted since the operating 

system was installed, the more keys should be recovered, therefore recently installed or 

little used systems will produced less recovered keys. The number of rejected keys and 

values has to be related to the number of inserted keys and values (which have 

overwritten the previously deleted data). It also seems reasonable that the number of the 

recovered keys and values influences the number of rejected keys and values.  

Table 29 Numbers of "live", recovered and rejected keys and values 

Test file Live  
keys/values 

Recovered 
keys/values 

Rejected 
keys/values 

bcd-template 190/151 0/0 0/0 
bcd-template2 99/75 0/0 0/0 
components 61246/126110 0/0 0/0 
components1 61660/117349 41/58 0/0 
components2 65413/135986 125/54 0/0 
default 725/2672 0/0 0/0 
default1 9200/11430 6/1 0/2 
default2 335/1504 0/0 0/0 
default3 304/1338 0/0 0/0 
default4 447/2174 0/0 0/0 
ntuser.dat 1397/7093 15/24 0/2 
ntuser2.dat 3062/14524 15/10 0/39 
ntuser3.dat 10319/30861 0/0 2/0 
ntuser4.dat 17691/65993 1/14 0/0 
ntuser5.dat 10249/29992 2/0 0/0 
ntuser6.dat 3720/13212 9/35 0/0 
ntuser7.dat 473/881 0/0 0/0 
ntuser8.dat 1724/10565 0/0 0/0 
ntuser9.dat 3076/17012 19/40 0/10 
ntuser10.dat 2488/13536 1/0 0/0 
ntuser11.dat  2030/12773 1/0 0/0 
ntuser12.dat 2164/11802 0/0 0/0 
sam 54/61 4/5 0/0 
sam1 78/84 0/0 0/0 
sam2 52/58 1/1 0/0 
sam3 82/97 0/0 0/0 
sam4 52/59 6/7 0/0 
security 225/224 2/1 0/1 
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security1 326/335 0/0 0/0 
security2 75/74 6/6 0/0 
security3 90/99 0/0 0/0 
security4  81/80 values 0/0 0/0 
software 105061/163690 684/112 2/3 
software1 190526/291428 5059/5986 6/147 
software2 110053/183434 415/929 7/219 
software3 105619/163742 16/30 0/2 
system 13421/41543 0/0 0/0 
system1 16358/49704 7090/18268 93/2261 
system2 28474/65071 14198/31340 328/680 
system3 27020/58000 11327/22800 324/43 
userdiff 425/905 0/0 0/0 
userdiff1 425/905 0/0 0/0 
usrclass.dat 3963/31103 0/0 0/0 

 

Also 28 keys in software1 file and 8 keys in software2 file were recovered from cells 

not reached by the tree but carrying negative sizes. 

A code segment was inserted into regslack.pl to output the keys and values, which were 

rejected by the algorithm for being corrupted. . As sample outputs show in appendix B.4, 

the algorithm does a very good job at rejecting corrupted data. Rejected keys have for the 

most part no timestamp, and if they do, key names are clearly invalid, as they contain 

arbitrary data instead of ASCII text. Keys have mostly obscure value types, while valid 

types are in range 0-11 or 500 and 1000 ranges in SAM files. In cases where value type 

is within the valid range, the name and the value data show that the retrieved data was 

corrupted.     

 

Appendix B.5 shows sample outputs with recovered keys and values, and appendix B.6 

list a full output from a single (small) hive file. The recovered data is intact in the majority 

of cases and is displayed as it was intended. However, as previously discussed, there are 

no guarantees that recovered key names, value names or value data are not overwritten. 

Figure 11 Recovered data that is partially overwritten shows an example output were two 

of the recovered values seem to have been partially overwritten. It is impossible to 

completely avoid this problem, because tests of "live" registry values have shown that 

value data strings can contain any characters. 
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Figure 11 Recovered data that is partially overwritten 

 

Finally, as below figure shows, a recovered key and a "live" key can refer to the same 

value cell. The two key cells reside at different offsets, but point to a value at the same 

offset, which indicates that the value resides in the "live" registry and can therefore be 

updated at any time.  

Figure 12 Recovered key and "live" key referring to the same value 
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The above findings lead to a conclusion that despite the careful validation, it is not 

possible to guarantee that no corrupted data will be retrieved or that the retrieved data 

does not belong to another key or value. 
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Chapter 5.  RESULTS AND EVALUATION 

5.1 Results 

The project delivers a documentation of hive file structure, demonstrates that keys can be 

recovered from unallocated space of the registry hive files, and implements a tool that can 

achieve that. 

The main limitation of the project is a limited set of test hive files. Files originate from only 

two Windows platforms: Windows XP and Windows Vista (32-bit version) and all hive files 

originate from English versions of operating systems.   

At the DFRWS conference in August 2008 Morgan (2008) presented a new paper on 

recovering deleted data from the Windows registry while I presented a demo of the 

developed prototype. There was a considerable interest in the subject from the attendees 

of the conference, which confirms the need for tools that recover deleted keys from 

unused space of the registry.  

Morgan's algorithm calculates unallocated space based on cell sizes (positive cell size 

implies that the cell is unallocated). If a key signature is located in unallocated space, the 

key is recovered and the data segment is marked as allocated. The algorithm proceeds in 

a similar manner to recover value cells and security descriptor cells from the remaining 

unallocated space and finally outputs whatever is left as a hex dump. Morgan's algorithm 

has a weakness in that if data is partially overwritten, it may contain another key or value 

that will not be parsed by the algorithm. For example, a key name length that contains an 

arbitrary large number will result in recovery of a large chunk of data, displaying it as text 

and marking it as already parsed. Finally, Morgan does not correlate his results with the 

active registry entries, missing out on the fact that a recoverd key migh not have been 

deleted but only updated. 
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Morgan makes a valid observation that cell sizes can be manipulated to hide data, and 

that therefore calculation of unallocated space based on cell sizes would not discover the 

hidden data. A comparison of both methods has shown that calculation of unused space 

as not referred to by registry tree results in recovery of more keys. It is unclear why some 

cells are marked as allocated but seemingly not referenced by the registry tree; however, 

this project has shown that those cells can contain deleted keys. This leads to a 

conclusion the that method proposed in this dissertation for computing unallocated space, 

as a space not referred to by the registry tree is more effective.    

Since any application can access a registry, data does not always conform to 

specifications. The delivered tool displays all binary data as a hex dump; therefore, any 

text stored as binary data will be readable. Wong (2007) argues that text strings could be 

encoded in hexadecimal format and stored as strings. The final algorithm could be easily 

modified to display string values as both strings and hex dump to eliminate that 

possibility. 

The main challenge in recovery of deleted keys and values is validation of data. Key 

names and value names are stored as last fields, if only the last field is overwritten the 

algorithm will not detect that and corrupted data will be recovered. The same problem 

occurs when value data is stored in a separate cell, as no other fields can be validated. 

The final mystery is why deleted keys sometimes refer to "live" values. Although seldom 

occurring, this phenomenon can result in recovery of values that could have been 

modified after a key referring to them was deleted. The final algorithm could be modified 

to indicate if a recovered value is also referred by a "live" key, to alert a forensic 

investigator that the value might have been changed.  

5.2 Evaluation 

"Jolanta Thomassen has invested a considerable amount of time and effort into a 

rather unique thesis project and has accomplished a great deal in a relatively short 
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amount of time.  When she first approached me via email in the Spring of 2008, asking for 

thoughts or ideas for a thesis project, I offered her the idea of exploring the possibility of 

locating and extracting deleted Registry keys from within unallocated space within the 

hive files themselves.  At the time, online searches for this subject matter revealed 

questions asked as far back as 2001, but there had been relatively little work, if any, done 

in the ensuing time. Ms. Thomassen picked up the subject and delved into what might 

appear to be extremely technical and “arcane” material and in doing so, has done a 

fantastic job in not only understanding the material, but also programmatically 

demonstrating her understanding through the development of Perl code to locate and 

extract those deleted cells. 

Throughout the development of her thesis, Ms. Thomassen shared her Perl script and 

methodology with me.  As an incident responder and forensic analyst in the corporate 

consulting field in the United States, I could immediately see the usefulness and 

applicability of the fruits of her labor.  Forensics analysts do not rest an entire examination 

on a single artifact, and Ms. Thomassen’s research and development of working code has 

opened yet another door for us, revealing another avenue of analysis.  The code itself 

allows us to verify both her findings and ours, while automating the collection of data.  All 

of this is extremely valuable to forensic analysts. 

At the time she was working on her thesis, to the best of my knowledge, she was the 

only person conducting research into this field.  At the DFRWS conference in Baltimore, 

MD, in August 2008, another researcher, also working in isolation, presented a paper on 

his own findings.   

Ms. Thomassen’s research and dedication to seeing this project through to 

completion have resulted in a very valuable contribution to the field of computer forensic 

analysis.  I and others will forever be in her debt for taking on this arduous task and 

providing not only an understanding of the technical aspects of her research but also 

working code to demonstrate it." (Carvey, 2008b) 
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Chapter 6.  CONCLUSIONS 

6.1 Lessons Learned 

 

The project has gathered, verified, and extended the existing knowledge about registry 

hive files. The project proposes a method for calculation of the unallocated space as 

space not reffered to by the registry tree and shows that the method is more effective 

than calculation based on cell sizes. The main observation is that deleted keys can be 

recovered from the registry and Windows registry forensics should include analysis of the 

unallocated space to obtain more complete information about the machine and activities 

performed on it.  

6.2 Prospects for Further Work 

The project answers some questions and poses several new ones. The documentation of 

registry hives is still incomplete, many cell fields remain undocumented, and some cells 

marked as allocated do not seem to be referenced by the registry. There is not enough 

knowledge about how Windows registry functions perform updates and deletions or how 

different registry cleaners modify the registry. Applications that access the registry 

typically use Windows registry functions, but tools that modify registry without use of 

those functions are being developed. An editor that can modify registry hive files could 

give a more complete indication of a valid structure of hives and valid ranges of data, by 

testing if a modified file is accepted or rejected by the Windows operating system. The 

existing registry forensic tools should include analysis of keys residing in unallocated 

space to obtain a more complete information about the investigated machine, user 

activities and timeline information. 
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