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The Windows registry serves as a primary storage location for system configurations and as

such provides a wealth of information to investigators. Numerous researchers have worked

to interpret the information stored in the registry from a digital forensic standpoint, but no

definitive resource is yet available which describes how Windows deletes registry data struc-

tures under NT-based systems. This paper explores this topic and provides an algorithm for

recovering deleted keys, values, and other structures in the context of the registry as a whole.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
1. Introduction 2. Previous work
The Windows registry stores a wide variety of information,

including core system configurations, user-specific configura-

tion, information on installed applications, and user creden-

tials. In addition, each registry key records a time stamp

when modified which can aid in event reconstruction. This

makes the Windows registry a critical resource for digital

forensic investigations conducted against the Windows plat-

form, as numerous researchers have shown.

Little information has been published by Microsoft related

to the specifics of how registry information is organized into

data structures on disk. Fortunately, various open source

projects have worked to understand and publish these

technical details in order to write software compatible with

Microsoft’s registry format. However, no public resource

was yet available describing what happens to registry data

when it is deleted under Windows NT-based systems, 1 let

alone how a forensic examiner might reliably recover this in-

formation in the context of a registry hive. Here, we attempt

to shed light on questions related to the deletion of registry

data structures and suggest an algorithm for recovering this

information.
ows, Microsoft, Window
Server are registered tra

antly different registry fo
l Forensic Research Work
Harlan Carvey and Derrick Farmer have provided extensive

information on how to interpret various registry settings

from a forensic standpoint (Carvey; Carvey, 2005; Farmer,

2007). Dolan-Gavitt (2007–2008) has demonstrated how to

recover registry hives and other data structures from system

memory images. Numerous proprietary and open source tools

provide access to registry internals (LastBit Corp, 2006; MiTeC;

Morgan, 2007; Sharpe, 2002; Williams, 2000; Registry Tool).

Additionally, Lee (2001) wrote Registry UnDelete which re-

covers deleted registry data from the older Windows 98/ME

registry format.

Registry internal structures have been outlined by

Russinovich (1999) and Probert. Further detailed work has

been published by an unknown author in (B.D. WinReg.txt).

These resources, together with some testing and validation,

allow one to gain a clear understanding of the data structures

of Windows NT-based registries.
3. Registry structure overview

Here, we briefly provide an overview of the internal data

structures of the registry. Information on the specific layouts

of each structure may be found in Morgan (2008).
s 95, Windows 98, Windows ME, Windows NT, Windows 2000,
demarks of Microsoft Corporation.
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Fig. 1 – Top-level registry structure.
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The Windows registry is organized in a tree structure and is

analogous to a filesystem. For instance, registry values are

similar to files in a filesystem as they store name and type

information for discrete portions of raw data. Registry keys

are closely analogous to filesystem directories, acting as

parent nodes for both subkeys and values. Finally, individual

registry files (or ‘‘hives’’) are presented to users in Windows

under a set of virtual top-level keys in much the same way

that multiple filesystems in UNIX 2 are mounted under the

same root directory.

The internal structure of Windows registry hives does,

however, differ a great deal from typical filesystems. Registry

hive files are allocated in 4096-byte blocks starting with

a header, or base block, and continuing with a series of hive

bin blocks. Each hive bin (HBIN) is typically 4096 bytes, but

may be any larger multiple of that size. HBINs are linked

together through length and offset parameters as shown in

Fig. 1. Each HBIN references the beginning of the next HBIN

in addition to indicating its distance from the first HBIN.

Within each HBIN can be found a series of variable-length

cells. These cells are stored in simple length-prefix notation

where each cell’s total length (including the 4 byte length

header) is a multiple of 8 bytes. Fig. 2 illustrates the layout of

a typical HBIN.

The data portion of each cell contains either value data or

one of several different record types. Possible record types

include: key (NK) records, subkey-lists, value-lists, value (VK)

records, and security (SK) records.

The data structure which ties all of these elements together

is the key record. NK records contain a number of offset 3 fields

to other data structures. These referenced structures may exist

in any HBIN. In order to keep track of a key’s subkeys, NK re-

cords reference subkey-lists which in turn reference a set of

other NK records. NK records also store the offset of their parent

NK record. These key-related pointers are illustrated in Fig. 3.

Subkey-lists themselves are simple lists of pointer/hash tuples,

sorted in order by the hash value which is based on the refer-

enced subkey names. Multiple types of subkey-lists have been

used in different versions of Windows, but they appear to retain

the same basic structure. In early versions, including Windows

2000, subkey-lists use records with a magic number of ‘‘lf’’,

where the hash in each element is calculated simply by taking

the first four characters of the associated subkey’s name. Newer

‘‘lh’’ records appear to simply use a more efficient hash algo-

rithm, though we are currently unaware of the specifics.

A third, somewhat rare subkey-list type has a magic number

of ‘‘ri’’ and seems to implement an indirect block system, sim-

ilar to what is found in some filesystems.

NK records also contain pointers to value-lists which in

turn reference value records. Value-lists are similar to sub-

key-lists, but do not have hash values associated with them

and are not sorted in any particular order. VK records contain

some minimal metadata about a value along with the offset to

yet another cell which contains the value’s data. See Fig. 4 for

a sample illustration.
2 UNIX is a registered trademark of the Open Group.
3 Nearly all offset values stored in cell records (whether in the

NK records or elsewhere) are measured in bytes from the begin-
ning of the first HBIN, not from the beginning of the file.
A final significant detail related to NK records is the inclu-

sion of a modification time (MTIME) field. NK records are the

only known record type, aside from the hive header, to con-

tain any kind of time stamp. This field appears to be updated

any time the NK record itself is updated (with some excep-

tions, detailed later), which includes changes to values and

immediate subkeys.

Finally, a small number of security records are typically

stored in a given registry hive and are referenced by NK

records. SK records include a short header followed by

a Windows security descriptor which defines permissions

and ownership for local values and/or subkeys.4 Multiple NK

records may reference a single SK record which in turn stores

a reference count to simplify deallocation.

To tie this all together, let us present a simple example.

Suppose we had a simple registry hive rooted at a key named

‘‘parent’’, which has subkey named ‘‘child’’. Also suppose

this subkey has a value stored under it named ‘‘item’’ which

is a string, and this value’s data is the string ‘‘datum’’. The

user perspective of this structure is illustrated in Fig. 5. The

registry records needed to support this simple path are illus-

trated in Fig. 6. In order to look up \parent\child’s item

value, one would first need to find parent, and locate its sub-

key-list. The hash value for ‘‘child’’ would be calculated

and used to quickly narrow the list of NK records needing to

be checked (i.e., the set of all colliding hashes). Searching

this reduced list of NK offsets would yield an NK record which

had the proper name. One would then traverse the child

record’s value-list sequentially, checking each referenced VK

record to locate the proper value. If the item value’s data

was desired, the data pointer would be followed to the data re-

cord, unless a specific flag is set indicating that the data is

stored in the offset field of the VK record, in which case it

would be retrieved from there.
4. Testing methodology

In choosing a test platform for determining the changes in-

duced by key and value deletions, one could go with one of

(at least) two different routes. One could simply use the stan-

dard tools distributed with Windows (such as regedit.exe

and reg.exe), or instead write a minimal utility to interface

directly with the lowest-level Windows APIs. The former
4 See Brown (2005) and Microsoft (2008) for more information on
security descriptors.
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Fig. 2 – Hive bin structure.

Parent NK

Value-List

Value 1 Data 1

Value 2 Data 2

Value 3 Data 3

Fig. 4 – Value-related pointers.
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approach carries the advantage that it is more likely to simu-

late real-world scenarios and would permit one to test the be-

haviors of common tools. However, the latter approach may

allow a researcher to easily isolate the specific behaviors of

the APIs and to perform tests more consistently across multi-

ple versions of Windows. In addition, this second approach

could yield more accurate results when considering the be-

haviors of third party software which also directly accesses

the registry through the Windows APIs.

Due to time constraints, we chose to use the former method

for this research. Both regedit.exe and reg.exe were used

for each major test case. While some differences in behavior

were observed between these two tools, very little variation

was found in the core deletion behaviors for a given platform.

However, as with any conclusions drawn from a sampling of

test environments, investigators should retest these findings

with platforms similar to those being investigated if valuable

evidence were found in deleted registry data structures.

The following versions of Windows were tested: Windows

2000 Professional (SP0), Windows XP Professional (SP2), Win-

dows Server 2003 R2 (build 3790), and Windows Vista (SP0).

Tests were performed by making snap shots of the system

registry file before and after specific changes were made. Us-

ing these snap shots, each registry data structure was ana-

lyzed for the changes which took place during deletion.
Parent NK

Subkey-List

Child NK 1

Child NK 2

Child NK 3

Fig. 3 – Key-related pointers.
Several sets of test cases were developed, each focusing on

the behaviors related to a specific data structure and the

outstanding questions related to deletion. Between three

and six test runs were executed on each system, each with

a batch of tests applied. Test cases that were suspected of

interfering with one another were created under separate

key trees, or tested in separate batches. As the initial set of

test cases uncovered inconsistent or unexplained behaviors

between platforms, additional test cases were run to refine

the results. These additional test cases were then run again

on all platforms to ensure consistency. An outline of the spe-

cific test cases is included below:

� Subkey-lists and value-lists

> How are these lists are sorted?

$ Create a set of numbered elements under a key

(e.g. ‘‘subkey1’’, ‘‘subkey2’’, . or ‘‘value1’’, ‘‘value2’’,

.) in specific orders. Observe the ordering of elements

to deduce the sorting rules.

> How are these lists updated when elements are deleted?

$ Delete the previously created set of elements in specific

orders. For instance, deleting value-lists elements in

the reverse order of creation should result in no

changes to the tail of the list.

> Are these lists’ cells ever shortened?

$ Create a large number of elements. Observe the size of

the list’s cell.

$ Next, delete all but one element. Compare the lists’ cur-

rent and previous sizes.

> What happens to these lists when all elements are

removed?

$ Create a list of elements. Observe the list and referenc-

ing NK record.
"parent"

"child"

"item" "datum"

Fig. 5 – Simple example: logical view.



"parent"

Subkey-List

"child"

Value-List

"item" "datum"

Fig. 6 – Simple example: physical view.

Before deletions:

Element A Element B Element C Element D

After B is deleted:

Element A Element C Element D Element D

After D is deleted:

Element A Element C Element D Element D

After A is deleted:

Element C Element C Element D Element D

Fig. 7 – Hypothetical subkey deletion sequence.
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$ Remove all elements from the list and observe it again

along with the referencing NK record.

� Values

> What happens to VK and data records when values are

deleted?

$ Create multiple VK records of different types and sizes.

In particular, create some values with 4 bytes or less in

data, and some with more than 4 bytes. Observe the VK

and data records.

$ Delete the values. Observe any changes to the VK and

data records.

� Security records

> What happens to SK records when a referencing key is

deleted?

$ Create a new key associated with an existing SK record.

Observe the SK record.

$ Delete the referencing key. Observe any changes in the

SK record.

$ Repeat test by creating a key with a dedicated SK

record.

� Keys

> What happens to NK records when keys are deleted?

$ Create multiple keys with different combinations of

subkeys, values, and security records. Observe the NK

records.

$ Delete keys and observe changes in the NK records.

> What happens to a tree of data structures when the root

key is deleted?

$ Create a tree of keys and values several levels deep. Re-

cord all data structures.

$ Delete the root key. Observe changes in all data struc-

tures. Compare these changes to the changes that occur

when the structures are individually deleted.

While this set of tests may not encompass every possible

behavior of data structure deletion, it does provide sufficient

information to develop a general picture of registry deletion.
5. Registry deletion behaviors

The most basic behavior to understand in analyzing registry

deletions is how the registry manages unallocated cells. As

new records are added and free space is allocated, existing

empty cells may be split if they are much larger than the

required space. However, as cells are later deallocated, any ad-

jacent unallocated cells would need to be merged in order to

prevent serious fragmentation. Indeed, this is how the registry

manages unallocated space. When a given cell is decommis-

sioned, the cells directly before and after are checked. If either

(or both) of these cells are already unallocated, the cells are

merged together by updating the header length value of the

earliest cell. The other cells’ lengths are not updated. This pro-

cess makes recovery somewhat complicated, since structures

cannot be found at specific offsets within a cell.

We have found that the majority of structures stored in

cells are preserved when they are deallocated; however, cer-

tain key pieces of information are explicitly destroyed or par-

tially corrupted during deletion, and these behaviors vary

from record type to record type. Here we outline the changes

that take place for each record. More detailed information

on each structure may be found in Morgan (2008).

Since registry keys act as the glue that ties registry ele-

ments together, they are of primary importance. When a key

is deleted, its NK record is changed in a number of ways. For

one, the pointer which references subkey-lists is destroyed

(overwritten with 0xFFFFFFFF) and the stored number of

subkeys is set to 0. In addition, the pointer to a key’s security

record is similarly destroyed. If a key has subkeys, the record’s

modification time is updated, otherwise it is not. The only

known exception to this rule is found on Windows 2000 where

a key with subkeys does not have its modification time

updated at all when it is deleted.

When analyzing changes to subkey-lists, we must consider

two cases: first, where the parent key (and therefore all sub-

keys) is deleted; and second, where some number of subkeys

are deleted. As it turns out, these two cases are actually very

similar. When a single subkey is deleted, the element is re-

moved from the list and the resulting list is rewritten to the

cell. The remaining free space in the cell is not wiped and in



Let LC be the list of all unallocated cells in registry file R, stored as a list of variable-length segments

Let LK be an empty list of NK records

For each segment, C, in LC:

Search C for NK records in increments of 8 bytes

For each NK record, K in C:

Append K to LK

Remove K’s segment from LC (This may require segments in LC to be split)

For each NK record, K, in LK:

Recursively follow K’s parent links, storing each key name with K, until:

The root NK record is found, resulting in complete path reconstruction

Or, a non-NK record is found, resulting in partial path reconstruction

Or, the registry path depth limit is reached, resulting in no path reconstruction

If K’s value-list, VL is in LC and is intact:

Remove VL’s segment from LC

For each value record, V, in K’s value-list:

If V occurs in LC and is an intact VK record:

Remove V’s segment from LC

Store V along with K

If V’s data cell, D, occurs in LC and is intact:

Remove D’s segment from LC

Store D along with V

Output K and all associated data

For each remaining segment, C, in LC:

For each remaining intact VK record, V, in C:

Remove V’s segment from LC

If V’s data cell, D, occurs in LC and is intact:

Remove D’s segment from LC

Store D along with V

Output V

For each remaining intact SK record, S, in C:

Remove S’s segment from LC

Output S

For each remaining segment, C, in LC

Output C
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no tests was the cell shortened to conserve wasted space.

Consequently, a number of subkey-list elements (each 8 bytes

in size) can be found at the end of a subkey-list that has been

shortened. Unfortunately, this information is typically not

very useful because in most cases the last element in the sub-

key-list will be repeated over and over, unless it was deleted
midway through a set of deletions, at which point the second

to last element would begin the repetitions as internal

elements continue to be deleted. Fig. 7 illustrates how a sub-

key-list would look at each step if elements B, D, and A were

removed, in that order, from an original list of: (A,B,C,D).

When it comes to deletion of a parent key, our experiments
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indicated that all children are merely deleted in sequence with

some unknown or arbitrary order. This causes the subkey-list

to be repeatedly rewritten with each successive deletion, cor-

rupting the majority of records in most cases. The number of

elements in the subkey-list is also reduced to 0 upon deletion

of a parent key.

The changes which occur to value-lists during deletion dif-

fer somewhat from those of subkey-lists, even though their

structures are almost identical. As with subkey-lists, when

values are deleted from a key the elements are removed and

the list is simply rewritten. Here, slack space is also not wiped

and value-list cells do not appear to be shortened as elements

are removed, which matches the general behavior of subkey-

lists. However, when a value-list’s parent NK record is deleted,

value-lists are not modified beyond having their holding cell

deallocated; all links to the (now deleted) VK records are left

intact.

In general, VK records and the data cells they reference are

not altered when they are deleted. The only exception to this

rule is on Windows 2000 where the first 4 bytes of these cells

(for both VK records and data cells) are overwritten with

0xFFFFFFFF. In the case of the VK record, this corrupts both

the 2-byte magic number and the 2-byte length for the value’s

name. In the case of a data cell, there’s no way of knowing

what data would be lost. Fortunately, this behavior was only

observed on Windows 2000 and may be indicative of a bug

on that platform.

Finally, there are few changes associated with the deletion

of security records. Of course since these records may be refer-

enced by multiple keys, they are only deleted when all keys ref-

erencing them are also deleted or are set to reference other SK

records. Our observations indicate that nothing changes in SK

records when this occurs. In fact, not even the reference count

(which would store a value of 1 before the final parent key de-

letion) was updated to 0 when the SK record was deallocated.
6. Data recovery and analysis

While it is unfortunate that certain critical portions of records

are corrupted during deletion, it seems that the designers of

the registry left behind just enough information to associate

the deleted structures. While the links from a parent NK record
Table 1 – New user entries (long values truncated)

Path Typ

/SAM/Domains/Account/Users/000003EC KEY

/SAM/Domains/Account/Users/000003EC/F BINARY

/SAM/Domains/Account/Users/000003EC/V BINARY

/SAM/Domains/Account/Users/Names/Kobayashi KEY

/SAM/Domains/Account/Users/Names/Kobayashi/ 0x03EC

/SAM/Domains/Builtin/Aliases/Members/

S-1-5-21-343818398-573735546-839522115/000003EC

KEY

/SAM/Domains/Builtin/Aliases/Members/

S-1-5-21-343818398-573735546-839522115/000003EC/

EXPAND
to child NK records are apparently destroyed beyond repair, we

are lucky that each NK record stores a pointer to its parent

which is left intact during deletion. Based on this and the

fact that the links from an NK record to its values are generally

unmodified, we have developed a high-level algorithm for

recovering registry data with context (see Algorithm 1).

Algorithm 1. Data recovery with context

Algorithm 1 relies on a method to validate that each

located data structure is intact; something that is somewhat

difficult to do. Performing checks to verify record length and

signature is obviously straight-forward, but as far as we

know, there are no checksums or other integrity mechanisms

built into any cell records. Since most records contain a num-

ber of offset fields, a recovery tool could at least verify that

each provided offset makes sense (i.e., is within the bounds

of the file), which would help to prevent confusion of old

data with old records.

However, against an adversary determined to confuse re-

covery, any isolated record validation would ultimately fail.

For instance, an adversary could create a binary value and

store a whole NK record in that space, and then remove it.

Algorithm 1 would likely pick that record up as being a true

deleted NK record. This could be achieved without direct

access to registry files, which means even lower privileged

users could perform such an attack. Unfortunately, little

can be done to avoid this problem, since the links from the

more authoritative NK records to deleted NK records are bro-

ken. Attempting to find uncorrupted subkey-lists could yield

structures referencing a given NK record, but these may be

few and far between. Another approach would be to adapt

the algorithm to start by isolating values and their data cells

and only search what is left over for NK records and other

data structures. However, this would degrade recovery per-

formance in the more common case where there is no

adversary.
7. Experimental results

We have implemented Algorithm 1 as an extension to

RegLookup (Morgan, 2007). This new command line tool,

reglookup-recover, attempts to recover as many intact
e Value MTIME

2008-05-04 23:43:19

\x02\x00\x01\x00. N/A

\x00\x00\x00\x00. N/A

N/A 2008-05-04 23:43:19

N/A N/A

N/A 2008-05-04 23:43:19

_SZ ! \x02\x00\x00 \x02\x00\x00 N/A



Table 2 – Deleted user entries

Offset Length Type Path MTIME Num. Of Values Data Type

0x1C88 0x58 KEY /SAM/SAM/Domains/Account/Users/Names/Kobayashi 2008-05-04 23:43:19 1 N/A

0x4F58 0x58 KEY /SAM/SAM/Domains/Builtin/Aliases/Members/

S-1-5-21-343818398-573735546-839522115/000003EC

2008-05-04 23:43:19 1 N/A

0x1CE8 0x18 VALUE N/A N/A 0x03EC
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structures as possible and writes them to the standard output

in a CSV-like format. Preliminary testing in a lab environment

has shown that Windows does a reasonably good job at avoid-

ing registry fragmentation over short periods of time, which

means deleted data structures have a relatively short lifetime

in an active registry. However, certain situations exist which

allow for greater longevity. For example, the Security Ac-

counts Manager (SAM) registry file is relatively inactive, since

it is small and stores mostly user account and group informa-

tion which changes infrequently. One might guess that

deleted structures here likely have a long lifetime.

Using the reglookup and reglookup-recover command

line tools, we tested a SAM-related scenario under Windows

XP. First, a snapshot of the SAM registry was taken. Next,

a new user was created with administrative privileges and an-

other snapshot was taken. Finally, the new user was deleted,

and a final snapshot was taken of the SAM. Between steps,

the system was shut down in order to take the snapshot,

and then booted again for the next step.

Upon creating the new user account, which was named

‘‘Kobayashi’’, three keys and four values were added to the

SAM registry (see Table 1). A number of other registry keys

and values were modified as well, but these weren’t directly

relevant to this test. Note the odd data type for the /SAM/

Domains/Account/Users/Names/Kobayashi/ value. Win-

dows does a peculiar thing by actually storing user ID

numbers in the value type field of the SAM registry. Also note

that this value has no name. In Windows, the value would

be considered the ‘‘(default)’’ value for the key, but in order

to avoid any possible naming ambiguity, reglookup simply

returns a path with a trailing ‘‘/’’ and an explicit type field.

After deleting the user, the newly created keys were all

deleted. The set of keys and values in the SAM registry was

identical to what it was before the user creation, though
Table 3 – Unallocated space and intact structures

System A

Windows version Server 2003 SE (build 3790) Server 2003

System purpose IIS-based web server,

heavy use

MSSQL-bas

moderate u

System lifetime 3.3 years 2.7 years

Aggregate hive size (MB) 18.1 36.7

Unalloc. space (%) 0.31 7.4

Unalloc. and intact (%) 0.097 0.21

Mean unalloc. cell size (bytes) 18.64 361.8
once again, a number of values and key MTIMEs were

updated. We then used the reglookup-recover tool to ex-

tract a subset of the keys and values that were deleted when

the user was removed. These results are listed in Table 2

and allow us to see that the user once existed. Because neither

the ‘‘Kobayashi’’ or ‘‘000003EC’’ keys had any subkeys, their

MTIMEs are set to when they were last modified before dele-

tion (in this case, when the user was created). The recovered

value record has no path because the value-list linking the

Kobayashi key to it had been overwritten. Luckily in this

case, the value’s type matches with the name of the

000003EC key under the local domain’s group membership

area, which would provide an investigator with at least

some context.

In the general case of trying to find useful information in

deleted registry keys, we can first try to determine what

percentage of typical system registries are unallocated and

intact. The definition of ‘‘typical’’ is of course open to inter-

pretation, but as a starting point we gathered some statistics

from a number of Windows systems, which is summarized in

Table 3.

To generate these data, an aggregate of registry files was

tested from each installation which included the system,

software, SAM, and security registries. (User-specific regis-

tries and default or backup registries were not included.)

The percentage of total unallocated space and percentage of

successfully parsed unallocated space are listed. Finally, the

average number of bytes per unallocated cell is included in

Table 3 to help explain the results.

The algorithm performs remarkably well on systems C

and D, extracting the vast majority of deleted space. How-

ever, it does not fair well on systems A and B. The cause

for this on system A is the very small mean unallocated

cell sizes. Registries that have been in operation a long time
B C D

EE (build 3790) Server 2003 EE (build 3790) 2000 Professional SP4

ed DB server,

se

Testing platform, light use Desktop, light use

2–3 months 3.5 years

30.7 16.8

5.8 2.9

5.3 2.7

324.3 3427
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tend to accumulate a large number of 8 and 16 byte unallo-

cated cells which contain only 4 and 12 bytes of meaningful

data. The cause for the rather poor performance on system

B is not immediately clear. By looking at system B’s unallo-

cated cells, we found that like system A, it had a large num-

ber of 8 and 16 byte cells, but this was offset by an additional

set of 4064 byte cells at the end of the registry files. These

large cells (which fill an entire HBIN’s data area) were mostly

filled with NUL bytes, indicating they had not yet been used.

It is possible that on system B, Windows chose to pre-allocate

a number of HBIN blocks, skewing the basic statistics pre-

sented here.

Overall, it seems that the amount of information available

can vary widely from one system to another. The algorithm

presented here seems to perform well in extracting this infor-

mation, and in some instances may provide critical clues

which would have otherwise been difficult to obtain in

context.
8. Antiforensics

As with many forms of antiforensics, covering one’s trail in

the Windows registry may be achieved with some of the sim-

plest of tools. In order to eliminate previously deleted data,

a user would do a good job of it by simply creating many

keys and small values to fill any fragmented free space. This

may also have the benefit of overwriting key modification

times if the values were created in a variety of locations.

Another approach to overwriting deleted structures would

be to use one of several tools available (Abexo; Auslogics;

Hederer, 2005; iExpert Software) for defragmenting the regis-

try, in which case it would be difficult to prove that the user

was intentionally trying to destroy evidence.

A technically savvy adversary may also attempt to hide in-

formation in the registry where standard tools will not find it.

For instance, Franchuk (2005) described a way to hide registry

keys from certain versions of regedt32.exe by simply creat-

ing keys with long names, though these keys are easily found

by more robust registry tools. Another way to hide data within

the registry would be to place it within the registry file header.

Here, there are nearly 4000 bytes of apparently reserved space

that should be ignored by Windows and most registry tools.

However, it would be easy for investigators to locate any

hidden data in the header with a simple hexadecimal editor.

Finally, an adversary could also traverse the list of cells in

the registry, select an unallocated one, and simply change

the length field to a negative value. This would mark the cell

as allocated, even though no other registry structures refer-

ence it. Preliminary tests showed that Windows simply ig-

nores these cells, as expected. Detection of this kind of data

hiding is much more difficult, since it would require an inves-

tigator to build a list of all allocated cells and then ensure that

at least one existing record references each individual cell. Of

course there are likely other methods for hiding data within

the registry. An obscure key or value placed deep within a lit-

tle-known configuration tree would likely avoid notice in most

cases due to the poorly documented nature of the registry.
9. Further research

Certain areas of Windows registry behavior present outstand-

ing questions. Perhaps most unknowns lie in the area of spe-

cific tool behavior. For instance, simple tests reveal that

regedit.exe and reg.exe do behave somewhat differently,

particularly in creating new keys and values. For instance,

when a new key or value is created with regedit.exe,

a ‘‘New Key #1’’ or ‘‘New Value #1’’ structure is created imme-

diately as a place holder with the expectation that a user will

rename it. This typically leaves behind temporary key and/or

value data structures. Additionally, reg.exe appears to al-

ways create at least one value, the ‘‘(default)’’ value, in

the keys it creates. Other tools do not exhibit this behavior.

These minor differences could be useful to investigators in de-

termining how keys and values may have come to be created.

Similar differences between tools may appear in relation to

key or value renames, moves, or copies. For instance some

tools may use low-level system calls to rename a value, while

others could simply copy and delete.

It may also prove useful for investigators to understand the

typical longevity of deleted data. In trying to determine this,

one would need to ask questions such as: How fragmented

does the registry become over time? What is Windows’ reallo-

cation strategy for deleted space? How does longevity of de-

leted cells differ based on their size? All of this information

would help to provide a complete picture of Windows registry

behavior.
10. Conclusions

This research draws from a fragmented and disparate set of

sources to present digital forensic examiners a more complete

view of the Windows registry’s internal data structures. In us-

ing this information to analyze how Windows deletes registry

keys, values and security properties, we have discovered that

deleted information is recoverable if it has not been overwrit-

ten, though it may not be entirely trustworthy. We also found

that the platforms tested behave quite similarly and should

simplify the implementation of recovery tools.
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