The Windows NT Registry File Format
Version 0.4

Timothy D. Morgan
tim-registry()sentinelchicken.org

June 9, 2009

Abstract 2 Previous Work

Registry internal structures have been outlined by Mark

Russinovich [15] and David Probert [14], which provide

' good overview of how Windows interacts with registry

gmponents. Further detailed work has been published by

E%known authors in [3] and [2], which lays the ground-
rk for a detailed understanding of registry data struc-

The Windows registry serves as a primary storage |
cation for system configurations and other informatio
Numerous third-party commercial and open source tog
have been released to interpret and manipulate regis
hives, but a comprehensive description of the registr

data structures seems 10 be missing from the public res. Numerous open source tools provide access to NT

main. This document attempts to shed light on the deta}l %istry internals [12, 16, 18, 20] and have expanded on
of the registry format and will be updated as more infthe public’s knowledg;e of’ tec’hnical specifics

mation is made available.

3 Registry Structure Overview

1 Introduction
Here, we briefly provide an overview of the internal data
structures of the registry. Later sections provided addi-
nal details about specific groups of data structures. Fi-
lly, a reference on the specific layout of each structure
ay be found in Appendix A.

The Windows registry stores a wide variety of informa!©
tion, including core system configurations, user-speci
configuration, information on installed applications, ard

user credentials. Little information has been publishgfle \windows registry is organized in a tree structure and
by Microsoft related to the specifics of how registry ing 4nai0gous to a filesystem. For instance, registry values
formation is .orgamzed into data structures on disk. FQlie similar to files in a filesystem as they store name and
tunately, various open source developers have Workeq)}Be information for discrete portions of raw data. Reg-

understand and publish these technical details in ordellféey keys are closely analogous to filesystem directories,

write software compatible with Microsoft’s registry for'acting as parent nodes for both subkeys and values. Fi-

mat. However, these sources are by and large incomplelqy “individual registry files (or *hives”) are presentied
and fragmented, making tool implementation difficult angk e in Windows under a set of virtual top-level keys in

tedious at best. Here we attempt to combine the ava{{j,ch the same way that multiple filesystems in UNIX
able public information, along with additional knowledg€,. mounted under the same root directory.

gleaned from testing, to provide a comprehensive refer-

ence on Windows NT-based registry data structuféss The internal structure of Windows registry hives does,

should be considered a living document and will be upowever, differ a great deal from typical filesystems. One

dated as new information becomes available. Please cefajor difference is that keys reference values differently

tact the author with any errata or new information perthan subkeys, whereas most filesystems reference both us-

taining to data structure specifics. ing the same structures. Additionally, due to the type of
storage (a binary file), the allocation storage for datacstru

tures is done in a way as to minimize fragmentation and
*Throughout this paper, note that Windows, Microsoft, Wind®5, | lio At

Windows 98, Windows ME, Windows NT, Windows 2000, WindowsIInear space utilization.

XP, Windows Vista, and Windows Server are registered tradksnof

Microsoft Corporation. 1UNIX is a registered trademark of the Open Group.

6 SUBKEY AND VALUE LISTS

| Registy Header | Parent K

- Hive Bin 1
e 1
C Hive Bin 2
Hive Bin 4 (
[chiank1 |
[chiankz |
Figure 1: Top-level Registry Struct
igure 1: Top-level Registry Structure [chilanks |

Hive Bin Header . .
Figure 3: Key-Related Pointers
Cell 1 Length
Cell 1 Data 5 Keys
Cell 2 Length
The data structure which ties all of these elements together
Cell 2 Data is the key record. NK records contain a number of offset
fields to other data structures. These referenced striscture
Cell 3 Length may exist in any HBIN. In order to keep _track o.f a key’s
subkeys, NK records reference subkey-lists which in turn
Cell 3 Data reference a set of other NK records. NK records also store
the offset of their parent NK record. These key-related
pointers are illustrated in Figure 3. NK records also con-
)] _ tain pointers to value-lists which in turn reference value
Figure 2: Hive Bin Structure (VK) records.

A final significant detail related to NK records is the
inclusion of a modification time (MTIME) field. NK
. . records are the only known record type, aside from the
4 Hive Bins hive header, to contain any kind of time stamp. This field
appears to be updated any time the NK record itself is
updated (with some exceptions, detailed later), which in-
cludes changes to values and immediate subkeys.

Registry hive files are allocated in 4096-byte blocks start-

ing with a header, or base block, and continuing with :

series of hive bin blocks. Each hive bin (HBIN) is typi6 SUbkey and Value Lists

cally 4096 bytes, but may be any larger multiple of that . . . _

size. HBINs are linked together through length and offsétibkey-lists are simple lists of pointers/hash tuples,
parameters as shown in Figure 1. Each HBIN referen&@ted in order by the hash value, which is based on the

the beginning of the next HBIN in addition to indicatingeferenced subkey names. Multiple types of subkey-lists
its distance from the first HBIN. have been used in different versions of Windows, but they

appear to retain the same basic structure. In early ver-

sions, including Windows 2000, subkey-lists use records
Within each HBIN can be found a series of variable IenngIth amagic number_ off”, wherg the ha_sh in each el-
cells. These cells are stored in simple length-prefix nota- entis calculated simply by taking the first four charac-

tgrs of the associated subkey’s namen"‘records appear

tion where each cell’s total length (including the 4-byt) . X .
length header) is a multiple of 8 bytes. Figure 2 iIIustrat%% be identical except that they use a more intelligent hash

the layout of a typical HBIN. The data portion of eac gorithm which is detailed in Appendix C.

cell contains either value data or one of several differéddmetimes, when a large number of subkeys exist, Win-
record types. Possible record types include: key (NKpws uses anr” subkey list type which implements an
records, subkey-lists, value-lists, value (VK) records, s ’Nearly all offset values stored in cell records (whethertia NK

curity (SK) records, big data records, and big data indirggtords or elsewhere) are measured in bytes from the begimfithe
offset cells. first HBIN, not from the beginning of the file.

9 VALUE DATA STORAGE

Parent NK "parent"”

((| “item" |—>| "datum"|
| Value 1 |—>| Data 1 |

Figure 5: Simple Example: Logical View

|Va|ue2 |—>| Data 2 |

| Value 3 |—>| Data 3 | "parent"

Figure 4: Value-Related Pointers _

indirect block system, similar to what is found in some "child"
filesystems. These subkey-lists do not include a hash]

value in each list element and only reference additional

subkey-lists in a tree structure. The leaf elements of these _
trees tend to be'h” or “1i " record types. Thel‘i " record (

type seems to be identical toi*” records in structure ex- | "item" |->| "datum" |

cept that they reference keys rather than additional subkey
lists. Figure 6: Simple Example: Physical View

Value-lists are similar to subkey-lists, but do not havehhas

values associated with them and are not sorted in any paem value, one would first need to fingrent, and lo-
ticular order. Finally, VK records contain minimal metaeate its subkey-list. The hash value fahil d” would
data about a single value and store the offset to yet anotbercalculated and used to quickly narrow the list of NK
cell which contains the value's data. See Figure 4 forrécords needing to be checked (i.e., the set of all colliding
sample illustration. hashes). Searching this reduced list of NK offsets would
then yield an NK record which had the proper name. One
would then traverse thehi | d record’s value list sequen-
7 Security Records tially, checking each referenced VK record to locate the
proper value. If theétemvalue’s data was desired, the

. . . data pointer would be followed to the data record, unless
A small number of security records are stored in a given

: : specific flag is set indicating that the data is stored in the
registry hive and are referenced by NK records. S ! . . .
. . offset field of the VK record, in which case it would be
records include a short header followed by a Windows, .
; : .) - retrieved from there.
security descriptor which defines permissions and own-
ership for local values and/or subkeys. (See [1, 7] for
more information on security descriptors.) Multiple NK%
records may reference a single SK record which in tu Value Data Storage

stores a reference count to simplify deallocation.

In most cases, value data is stored very simply in a cell
with no real structure, other than that dictated by the data
8 Example: Keys and Values type (discussed later). However, if a value is four or fewer
bytes long, Windows may choose to store the data in the
Let us present an example to tie together some of the dof{fset field of the VK record, rather than allocating a new

structures discussed thus far. Suppose we had a simdpa}?a cell to store it. If this occurs, the highest bit of the

registry hive rooted at a key namegafent”, which has a?a size field (stored in the VK record) will be set to 1.
subkey namedchi | d”. Also suppose this subkey has dn addition, starting with Windows XP, value data records
value stored under it namedt‘ent which is a string, and may be fragmented in to multiple cells [8] using “big
this value’s data is the stringidt unf. The user perspec-data” records. According to [17], Windows XP and later
tive of this structure is illustrated in Figure 5. The regwill look for a big data record under the following condi-
istry records needed to support this simple path are illu®ns: the registry major/minor version is 1.4 or later and
trated in Figure 6. In order to look ugparent\child’'s the data size is greater than 16344 bytes in length. At that

11 REGISTRY DELETION BEHAVIORS

The REG_SZ, REG_EXPAND_SZ, and REG_LINK

Big Data (sig. "db") types are all stored as UTF-16 litle endian strings.

l REG_SZ is a basic string type, REG_EXPAND_SZ is
similar to REG_SZ, except that it may contain references
Cell of N Offsets to environment variables with a %/ARI ABLENAVEYY

syntax. Finally, the REG_LINK type is used to store
symbolic links.

Fragment 1 More structured data types include the
(16344 bytes) REG_MULTI_SZ, REG_RESOURCE_LIST,
Fragment 2 REG_FULL_RESOURCE_DESCRIPTOR, and
(16344 bytes) REG_RESOURCE_REQUIREMENTS_LIST types.
REG_MULTI_SZ is a list of strings where each is stored
in UTF-16 little endian and is NUL terminated. (Because
each character in UTF-16 is at least two bytes wide, one
Fragment N NUL character is represented as@0\ x00".) The end of
(< 16344 bytes) a REG_MULTI_SZ list is also marked with a NUL char-
acter, resulting in a characteristic four byte sequence of
Figure 7: Big Data Linking zero bytes (two to terminate the final string, and two more
to terminate the list). The REG_RESOURCE_LIST,
REG_FULL_RESOURCE_DESCRIPTOR, and

point, Windows will attempt to validate the cell reference§ec RESOURCE REQUIREMENTS_LIST types
by the value record as a big data record. The big daf@ \;sed to store hardware information, in a series of

record will indicate the number of data chunk fragmenfgisied lists [9] whose formats are currently unknown.
are stored on disk as well as a pointer to an indirect block

of offsets for the fragment cells. Figure 7 demonstrates
how the data fragments may be located and Appendix : : :

contains more precise information on how to interpret tl‘;l:]‘ Reglstry Deletion Behaviors

big data records themselves.

The most basic behavior to understand in analyzing reg-
istry deletions is how the registry manages unallocated
cells. As new records are added and free space is allo-
cated, existing empty cells may be split if they are much
larger than the required space. However, as cells are later
Registry values can be one of several different typekeallocated, any adjacent unallocated cells would need to
The data type of a value is stored as a 32-bit integertie merged in order to prevent serious fragmentation. In-
the VK record, and based on this data type, the data aidled, this is how the registry manages unallocated space.
should adhere to a specific format. The known registhen a given cell is decommissioned, the cells directly
data types are named as follows: REG_NONE, REG_Sifore and after are checked. If either (or both) of these
REG_EXPAND_SZ, REG_BINARY, REG_DWORD,cells are already unallocated, the cells are merged togethe

10 Value Data Types

REG_DWORD_BIG_ENDIAN, REG_LINK, by updating the header length value of the earliest cell.

REG_MULTI_SZ, REG_RESOURCE_LIST,The other cells’ lengths are not updated. This process
REG_FULL_RESOURCE_DESCRIPTOR, makes recovery somewhat complicated, since structures
REG_RESOURCE_REQUIREMENTS_LIST, andannot be found at specific offsets within a cell.

REG_QWORD. However, note that in some instanc%

) . have found that the majority of structures stored in
Wmdow_s and th_lrd-party software does not h_onor_ th 2lls are preserved when they are deallocated; however,
convention and instead uses the data type field in t

Srtain key pieces of information are explictly destroyed

VK record for other purposes. (One example is in tr})er partially corrupted during deletion, and these behavior

}/Iglgt)jows SAM hive, where this field is used to store us\e/'[:lry from record type to record type. Here we outline the

changes that take place for each record.
The REG_NONE _and REG—BlNARY ypes argnce registry keys act as the glue that ties registry ele-
used to store arbitrary data without structure @fensogether, they are of primary importance. When a

with ~unspecified structures. Jhe REG_DWORDqy is deleted, its NK record is changed in a number of
REG_DWORD_BIG_ENDIAN, and REG_QWORD areilvays. For one, the pointer which references subkey-lists

all integer types which store values as 32-bit little endia]-g destroyed (overwritten witbx FFFFFFFF) and the stored
32-bit big endian, and 64-bit little endian, respectively

even the UTF-16 strings, would be different on a big endianddivs
3t is not known if the endianness of any of the integer types, architecture, such as NT on Alpha.

13 ACKNOWLEDGEMENTS

Before deletions: shortened as elements are removed, which matches the

| Element A || Element B || Element C || Element D | general behavior of su_bkey—lists. Howev_er, when avalut_a—

list's parent NK record is deleted, value-lists are not modi
fied beyond having their holding cell deallocated; all links
to the (now deleted) VK records are left intact.

| Element A H Element C H Element D |- In general, VK records and the data cells they reference
are not altered when they are deleted. The only exception

After D is deleted: to this rule is on Windows 2000 where the first 4 bytes of
these cells (for both VK records and data cells) are over-
El tA || El tC . . .
| emen H emen |-- written with 0xFFFFFFFF. In the case of the VK record, this
‘ is deleted: corrupts both the two-byte magic number and the two-
After Als deleted: byte length for the value’s name. In the case of a data

- - - cell, there’s no way of knowing what data would be lost.

Fortunately, this behavior was only observed on Windows
Figure 8: Hypothetical Subkey Deletion Sequence 2000 and may be indicative of a bug on that platform.

After B is deleted:

Finally, there are few changes associated with the deletion

number of subkeys is set to 0. In addition, the pointer qf security records.. Of course since these records may be
a key’s security record is similarly destroyed. If a key hagferenced by multiple keys, they are only deleted when
subkeys, the record’s modification time is updated, oth&L keys referencing them are also deleted or are set to
wise it is not. The only known exception to this rule igefer_ence otherSK records. Our observgtlonsmdlcate that
found on Windows 2000 where a key with subkeys doBething changes in SK records when this occurs. In fact,

not have its modification time updated at all when it {20t €ven the reference count (which would store a value
deleted. of 1 before the final parent key deletion) was updated to 0

when the SK record was deallocated.
When analyzing changes to subkey-lists, we must con-

sider two cases: first, where the parent key (and theref r}gqrrtnat(ljo? on pr%pofsed ;n_ethffslg)r recovering deleted
all subkeys) is deleted; and second, where some numis&psty data may be foundin [11,19].

of subkeys are deleted. As it turns out, these two cases are

actually very similar. When a single subkey is deleteq,

the element is removed from the list and the resulting li 2 Future Work

is rewritten to the cell. The remaining free space in the

cell is not wiped and in no tests was the cell shortengghile the majority of the registry data structures are
to conserve wasted space. Consequently, a numbefagfely understood, there are always nagging details that
subkey-list elements (each 8 bytes in size) can be foughain unexplained. Here we list a number of them and

at the end of a subkey-list that has been shortened. hvite readers to help us complete our knowledge of the
fortunately, this information is typically not very usefutegistry format.

because in most cases the last element in the subkey-list
will be repeated over and over, unless it was deleted mid-s A recent, detailed source of information in the mas-
way through a set of deletions, at which point the second ter’s thesis by Peter Norris[13] should be compared

to last element would begin the repetitions as internal el- against the results here and any differences sorted
ements continue to be deleted. Figure 8 illustrates how a out.

subkey-list would look at each step if elements B, D, and

A were removed, in that order, from an original list of: ® Determine purpose of remaining NK record flags.
(A,B,C,D). When it comes to deletion of a parentkey, our , peyea) format of free cell hive structure mentioned
experiments indicated that all children are merely deleted in [8]

in sequence with some unknown or arbitrary order. This

causes the subkey-list to be repeatedly rewritten with eaclk Investigate any changes brought by Windows 7.
successive deletion, corrupting the majority of records in

most cases. The number of elements in the subkey-list is

also reduced to 0 upon deletion of a parent key. 13 Acknowledgements

The changes which occur to value-lists during deletion

differ somewhat from those of subkey-lists, even thoudkie would like to thank the following individuals for their
their structures are almost identical. As with subkeyslisinvaluable contributions to this paper: Harlan Carvey, Ja-
when values are deleted from a key the elements aresen DeMent, Brendan Dolan-Gavitt, George Gal, Jason
moved and the list is simply rewritten. Here, slack spadéorgan, Joan Morgan, Jeffrey Muir, Matthieu Suiche, and
is also not wiped and value-list cells do not appear to Belanta Thomassen.

14 REVISION HISTORY

14 Revision History

DATE

| VERSION |

COMMENTS |

2009-06-09

0.4

Expanded information on
big data records. More ref
erences. Added algorithm
to appendices.

(%)

2009-05-22

0.3.1

Fixed a mistake regardin
big data elements. Adde
a bit of info about volatile
keys in the appendix.

[oNt=]

2009-05-22

0.3

Thanks to Matthieu
Suiche, Jeffrey Muir, ang
Jolanta Thomassen wit
help improving subkey list
structure, key flags, valu
flags, and regf headeg
information.

D

=

2008-12-01

0.2

Improved descriptions o
subkey-lists and added se
tion on values formats.

)
1

2008-08-08

0.1

Initial Release.

REFERENCES REFERENCES

References

[1] Keith Brown. What Is A Security Descriptopluralsite.com, 2005. Ported: 2005-01-18. Accessed8 IR 09.
Available at: http://www.pluralsight.com/wiki/defaudspx/Keith.GuideBook/WhatlsASecurityDescriptor.htm

[2] clark@hushmail.com. NT Security - Registry Structure beginningtoseethelight.org,
http://www.beginningtoseethelight.org/ntsecurityAB35307A7D52ED, 2005. Available at:
http://www.beginningtoseethelight.org/ntsecurityfB835307A7D52ED.

[3] B. D. WinReg.txt Available at: http://home.eunet.no/%7epnordahl/repagWinReg.txt.

[4] Brendan Dolan-Gavitt.Forensic analysis of the Windows registry in memoBFRWS, 2008. Available at:
http://dfrws.org/2008/proceedings/p26-dolan-gapdt.

[5] Scott Dorman. Volatile Registry Keys 2007. Available at:
http://geekswithblogs.net/sdorman/archive/2007/4/2/@atile-registry-keys.aspx.

[6] Stefan Kuhr. Registry Symbolic Links The Code Project, 2005. Available at:
http://www.codeproject.com/KB/system/regsymlinkxasp

[7] Microsoft. SECURITY_DESCRIPTOR Structure Last Updated: 2008-02-19. Available at:
http://msdn2.microsoft.com/en-us/library/aa37958fxa

[8] Microsoft. Kernel Enhancements for XP — Registry Enhancementdicrosoft, 2003. Available at:
http://www.microsoft.com/whdc/archive/XP_kernel.mggLC.

[9] Microsoft. Windows Registry Information for Advanced Usenslicrosoft, february 4, 2008 edition, 2008.
Available at: http://msdn.microsoft.com/en-us/librang724836%28VS.85%29.aspx.

[10] Microsoft. Predefined Keys Microsoft, http://msdn.microsoft.com/en-us/librang724836 Available at:
http://msdn.microsoft.com/en-us/library/ms724836

[11] Timothy D. Morgan. Recovering Deleted Data From the Windows Registry Available at:
http://www.sentinelchicken.com/research/registrgokery/.

[12] Petter Nordahl-Hagen. Offine NT Password & Registry Editor Available at:
http://home.eunet.no/%7epnordahl/ntpasswd/.

[13] Peter Norris. The Internal Structure of the Windows Registry 2009. Available at:
http://amnesia.gtisc.gatech.edu/%7emoyix/suzibdtwlitk/MSc/.

[14] David B. Probert. Windows Kernel Internals: NT Registry ImplementatioAvailable at: http://www.i.u-
tokyo.ac.jp/edul/training/ss/lecture/new-documerdstures/09-Registry/Registry. pdf.

[15] Mark Russinovich. Inside the Registry Windows NT Magazine, Microsoft, may 1999 edition, May 1999
Available at: http://www.microsoft.com/technet/arabiwinntas/tips/winntmag/inreg.mspx?mfr=true.

[16] Richard Sharpe. editreg.c 2002. Available at: http://websvn.samba.org/cgi-
bin/viewcvs.cgi/trunk/source/utils/editreg.c?revad@éw=markup.

[17] Matthieu Suiche. Undocumented Windows Vista and later registry secret3une 2009. Available at:
http://www.msuiche.net/2009/06/07/windows-vista-dair-registry-secrets/.

[18] Samba Development TeamSamba GIT Sources: Registry Librarywww.samba.org, 2008. Available at:
http://gitweb.samba.org/?p=samba.git;a=tree;f=smfiibdregistry;h=21934h5f658009{f0383f6aed41b102BIK46;hb=v4-
O-stable.

[19] Jolanta Thomassenkorensic Analysis of Unallocated Space in Windows Regidiwg Files University of
Liverpool, 2008. available at: http://www.sentinelchéckcom/research/thomassen_registry _unallocatede/spac

[20] Nigel Williams. dosreg.c c. 2000. Available at: http://www.wednesday.demon kalosreg.html.

REFERENCES

REFERENCES

Appendix A: Registry Data Structures

REGISTRY HEADER/BASE BLOCK

OFFSET | Size | TypE

DESCRIPTION

0x0 4 String (“regf”) Magic number
0x4 4 Unsigned Integerl Sequence Number 1: matches next field if hive was properlghayn
nized.
0x8 4 Unsigned Integett Sequence Number 2: matches previous field if hive was prppgri-
chronized.
0xC 8 Unsigned Integell 64-bit NT time stamp
0x14 4 Unsigned Integer Major version
0x18 4 Unsigned Integerl Minor version
0x1C 4 Unknown Unknown (type?)
0x20 4 Unknown Unknown (format?)
0x24 4 Offset Pointer to the first key record
0x28 4 Offset Pointer to start of last hbin in file
0x2C 4 Unknown Unknown (always 1)
0x30 64 String Hive file name?
0x70 16 GUID Unknown
0x80 16 GUID Unknown
0x90 4 Unsigned Integern Unknown (flags?)
0x94 16 GUID Unknown
OxA4 4 Unsigned Integetf Unknown
OxA8 340 | Unknown Unknown (reserved?)
Ox1FC | 4 Unsigned Integetl Checksum of data to this pointin header. See Appendix C.
0x200 | 3528 | Unknown Unknown (reserved?)
OxFC8 | 16 GUID Unknown
OXFD8 | 16 GUID Unknown
OxFE8 | 16 GUID Unknown
OXFF8 | 4 Unknown Unknown
OxFFC | 4 Unknown Unknown
HIVE BINS
OFFSET | Size [Tvee | DESCRIPTION
0x0 4 String (“hbin”) Magic number
0x4 4 Unsigned Integen This bin’s distance from the first hive bin
0x8 4 Unsigned Integerl This hive bin’s size (multiple of 4096)
oxC 16 Unknown Unknown
0x1C 4 Unsigned Integell Relative offset of next hive bin (should be the same value as
at offset 0x8)
0x20..[bin size]| variable | Structure List List of cells used to store various records (see below)
CELLS
OFFseT | Size | TypE | DESCRIPTION | DELETION NOTES |
0x0 4 Signed Integen Cell length (including these 4 Negative if allocated, positive i
bytes) free. If a cell becomes unallg-
cated and is adjacent to another yn-
allocated cell, they are merged hy
having the earlier cell's length ex-
tended.
0x4 variable | varies Contains one of: NK record,
VK record, SK record, subkeyr
list, value-list, or raw data blocks
(see below)

REFERENCES REFERENCES

SECURITY (SK) RECORDS

OFFSET | Size | TypE | DESCRIPTION | DELETION NOTES
0x0 2 String (“sk”) Magic number
0x2 2 Unknown Unknown
0x4 4 Offset Pointer to previous SK record
0x8 4 Offset Pointer to next SK record
0xC 4 Unsigned Integer Reference count Not set to 0 when deleted,
typically left at 1
0x10 4 Unsigned Integer Size of security descriptor
0x14 varies | Windows security| Data structure which contains owner
descriptor SID, group SID, DACL, SACL, and
control flags. More information can
be foundin [1, 7].

KEY (NK) RECORDS

OFFseT | Size | Type | DESCRIPTION | DELETION NOTES
0x0 2 String (“nk”) Magic number
0x2 2 Flags See Observed Key Flags table
below
0x4 8 Unsigned Integerl 64-bit NT time stamp Only updated if this key has sub-
keys. On Win2K, not updated even
in that case.
0xC 4 Unknown Unknown
0x10 4 Offset Parent NK record
0x14 4 Unsigned Integel Number of subkeys (stable) | Setto 0
0x18 4 Unsigned Integef Number of subkeys (volatile
[4])
0x1C 4 Offset Pointer to the subkey-list (stgd- Set to OxFFFFFFFF
ble)
0x20 4 Offset Pointer to the subkey-list
(volatile [4])
0x24 4 Unsigned Integef Number of values
0x28 4 Offset Pointer to the value-list fo
values
0x2C 4 Offset Pointer to the SK record Set to OXFFFFFFFF
0x30 4 Offset Pointer to the class name
0x34 4 Unsigned Integel Maximum number of bytesin Setto 0
a subkey name (unconfirmed)
0x38 4 Unsigned Integel Maximum subkey class name
length (unconfirmed)
0x3C 4 Unsigned Integel Maximum number of bytes in
a value name (unconfirmed)
0x40 4 Unsigned Integef Maximum value data size
(unconfirmed)
0x44 4 Unknown Unknown (possibly some sort
of run-time index)
0x48 2 Unsigned Integerl Key name length
Ox4A 2 Unsigned Integer Class name length
0x4C variable | String The key name; stored in
ASCII and is typically NUL
terminated

REFERENCES

REFERENCES

SUBKEY-LISTS

ny

| OFFsET | SizE | Type | DESCRIPTION | DELETION NOTES

0x0 2 String Magic number (“If”, “Ih",
“ri”, or “Ii")

0x2 2 Unsigned Integer | Number of elements in this Setto 0
subkey-list

0x4 4 or 8 (each)| Structure List Multiple subkey-list el-| List of elements deleted in
ements; see below for some sequence, causing mal
contents old elements to be lost.

SUBKEY-LIST ELEMENTS FOR LF AND LH TYPES

OFFsET | Size | TypE

| DESCRIPTION

| DELETION NOTES |

0x0

4

Offset

Pointer to NK record

ox4

4

Unsigned Integer

Hash value computed differently depending
subkey-list type (“If” or “Ih™)

on

SUBKEY-LIST ELEMENTS FOR RI AND LI TYPES

OFFSET | Size | TYPE | DESCRIPTION

| D

ELETION NOTES

0x0 4 Offset | If the type is “ri” then this is a pointer to another subkest|
record. Otherwise, it points to a subkey.
VALUE (VK) RECORDS
OFFSET | SIZE TYPE DESCRIPTION DELETION
NOTES
0x0 2 String (“vk”) | Magic number Under Win2K,
typically over-
written with
OXFFFF
0x2 2 Unsigned In-| Value name length Under Win2K,
teger typically over-
written with
OXFFFF
0x4 4 Unsigned In-| Data length
teger
0x8 4 Offset Pointer to data
0xC 4 Enumeration | Value type; one of: REG_NONE (0),
REG_SZ D), REG_EXPAND_SZ (2),
REG_BINARY 3), REG_DWORD (4),
REG_DWORD_BIG_ENDIAN (5), REG_LINK
(6), REG_MULTI_SZ (7), REG_RESOURCE_LIS|T
(8), REG_FULL_RESOURCE_DESCRIPTOR (9),
REG_RESOURCE_REQUIREMENTS_LIST (10Q),
REG_QWORD (11). In some cases, this convention
is not followed and other nonstandard values pre
used.
0x10 2 Flags If the O bit is set, the value name is in ASCII, other-
wise itis in UTF-16LE.
0x12 2 Unknown Unknown
0x14 variable | String The value name; stored in ASCII and is typically
NUL terminated
VALUE-LISTS
| OFFsET | Size | TYPE | DESCRIPTION | DELETION NOTES
0x0..[4*(num. values)] 4 Offset | List of pointers to VK records] List left intact if parent key is
Appear in order of value creation deleted. List simply rewritter
over the top of original when elt
ements are removed.

10

REFERENCES

REFERENCES

NORMAL DATA BLOCKS

OFFSET | Size | Type

| DESCRIPTION

| DELETION NOTES

0x0 variable | Raw Data

Data type and structure depends p®©n Win2K, first 4 bytes overwritten
type indicated by VK record.

with OXFFFFFFFF.

Bic DATA RECORDS

OFFSET | Size | TypE

| DESCRIPTION

| DELETION NOTES

0x0 2 String (“db”) Magic number Not yet studied.
0x2 2 Unsigned Intege Number of data fragments Not yet studied.
0x4 4 Offset Pointer to big data indirect cell Not yet studied.
0x8 4 Unknown Unknown (unused?) Not yet studied.

BiG DATA INDIRECT CELLS

OFFSET

| Size | TYPE | DESCRIPTION

| DELETION NOTES

0x0..[4*(num. fragments)] 4

| Offset | To a data fragment

| Not yet studied.

Appendix B: Record Flags and Constants

VALUE DATA TYPES

NAME ENUM. VALUE | FORMAT SUMMARY |

REG_NONE 0x0 Unknown. Apparently treated like
REG_BINARY.

REG_Sz 0x1 UTF-16 little endian string

REG_EXPAND_SzZ 0x2 UTF-16 little endian string with system path
variable (e.g., ¥6YSTEMROOT%') escapes

REG_BINARY 0x3 Raw data

REG_DWORD 0x4 32 bit, little endian integer

REG_DWORD_LITTLE_ENDIAN 0x4 Microsoft alias for REG_DWORD, though it
is not clear what endian format a big endian
Windows system (e.g. NT on Alpha) would
default to.

REG_DWORD_BIG_ENDIAN 0x5 32 bit, big endian integer

REG_LINK 0x6 A symbolic link, stored as a UTF-16 little en-
dian string

REG_MULTI_SzZ 0x7 A list of UTF-16 little endian strings. Each
string is NUL (*\ x00\ x00") terminated, and
the list itself is NUL terminated as well (re-
sulting in a total of four 0-bytes at the end pf
the data).

REG_RESOURCE_LIST 0x8 “A series of nested arrays” of unknown foy-
mat. See [9].

REG_FULL_RESOURCE_DESCRIPTOR | 0x9 “A series of nested arrays” of unknown foy-
mat. See [9].

REG_RESOURCE_REQUIREMENTS_LIS|TOxA “A series of nested arrays” of unknown foy-
mat. See [9].

REG_QWORD 0xB 64 bit, little endian integer

11

REFERENCES REFERENCES

OBSERVED KEY FLAGS
FLAG | DESCRIPTION

0x4000 | Unknown; shows up on normal-seeming keys in Vista and W2K84hi
0x1000| Unknown; shows up on normal-seeming keys in Vista and W2K8&si
0x0080 | Unknown; shows up on root keys in some Vista "software" hives
0x0040| Predefined handle; see: [10]

0x0020| The key name will be in ASCII if set; otherwise it is in UTF-1BL
0x0010| Symlink key; see: [6]

0x0008 | This key cannot be deleted.

0x0004 | Key is root of a registry hive.

0x0002 | Mount point of another hive.

0x0001 | Volatile key; these keys shouldn’t be stored on disk, adogrtb: [5]

Appendix C: Algorithms
Base Block Hash Algorithm
The following algorithm is used in the &gf " header base block:

let B be the first 508 bytes of the registry base bl ock
let Hbe a 32-bit value

H=0
for each 32-bit group, C, in B do
H=Ha&C
H = reverseByteOrder(H) /* interpret 4-byte groups as little-endian */
return H

“1'h” Subkey-List Hash Algorithm

The following algorithm was extrapolated from Samba sowa#e[18]. It has not been verified for correctness in all
situations. In particular, it is not known precisely how keis with UTF-16LE names would be processed since it
does not appear that Samba handles this case.

et N be the subkey name
let Hbe a 32-bit value
H=0

N = uppercase(N)

for each byte, B, in N do

H= (H x 37) nod 2%2
H=(H+ B) nod 232

return H

12

